1.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
2.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
3.Effects of miR-204-3p inhibitor on epithelial-mesenchymal transition and silicosis fibrosis in silicon dioxide-induced alveolar epithelial cells
Fang CHEN ; Jing YU ; Wenxuan HU ; Yangyang PI ; Xi ZHANG ; Luning WANG ; Ping ZHAO ; Faxuan WANG
Journal of Environmental and Occupational Medicine 2025;42(5):622-629
Background The pathogenesis of silicosis has not been fully elucidated, and microRNAs (miRNA) may be involved in the occurrence and development of silicosis. Objective To investigate the effect of miR-204-3p inhibitor on the epithelial-mesenchymal transition (EMT) process and silicosis fibrosis in silicon dioxide dust-induced alveolar epithelial cells. Methods A co-culture model of macrophages and epithelial cells was established using a Transwell chamber. NR8383 macrophages were seeded into the upper chamber of the Transwell, and RLE-6TN cells were seeded into the lower chamber. After 24 h of culture, the medium in the lower chamber was discarded, washed three times with phosphate-buffered saline (PBS), and replaced with serum-free medium. The cells were divided into four groups: control group, silicosis group, miRNA NC group, and miR-204-3p inhibitor group. The lower chamber was transfected with miRNA NC for the miRNA NC group or the miR-204-3p inhibitor for the miR-204-3p inhibitor group. The lower chambers of the remaining two groups were added by equal amounts of serum-free medium. After 24 h, except for the control group that received an equal volume of serum-free medium, the upper chambers of the remaining three groups were treated with 800 μg·mL−1 silicon dioxide dust. Morphological changes in each group were observed under a microscope. The mRNA and protein expression levels of EMT-related factors, including α-smooth muscle actin (α-SMA), Vimentin, N-Cadherin, and E-Cadherin, were detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot. The mRNA and protein expression levels of fibrosis-related factors, including Collagen I, Collagen III, and Fibronectin, were also assessed by RT-qPCR and Western blot. The fluorescence expression intensities of α-SMA, N-Cadherin, and E-Cadherin were evaluated by immunofluorescence. Results The morphological observation revealed that RLE-6TN cells in the control group exhibited a regular oval shape. After treatment with silicon dioxide, the cells predominantly displayed a long spindle shape. Following the intervention with the miR-204-3p inhibitor, the number of long spindle-shaped cells increased, and the intercellular gaps widened. The RT-qPCR results showed that, compared with the control group, the silicosis group exhibited significantly higher relative mRNA expression levels of EMT-related markers (α-SMA, Vimentin, and N-Cadherin) (P<0.05), while the relative mRNA expression level of E-Cadherin was significantly reduced (P<0.05); the relative mRNA expression levels of fibrosis-related markers (Collagen I, Collagen III, and Fibronectin) were also significantly elevated (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group showed significantly increased relative mRNA expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), decreased E-Cadherin mPNA expression (P<0.05), and elevated mPNA expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The Western blot analysis indicated that, compared with the control group, the silicosis group had significantly higher protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), lower E-Cadherin protein expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited significantly elevated protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), reduced E-Cadherin expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The immunofluorescence analysis demonstrated that, compared with the control group, the silicosis group showed enhanced fluorescence intensities of α-SMA and N-Cadherin and reduced fluorescence intensity of E-Cadherin. Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited increased fluorescence intensities of α-SMA and N-Cadherin and decreased fluorescence intensity of E-Cadherin. Conclusion The miR-204-3p inhibitor may exacerbate the EMT process and silicosis fibrosis in silicon dioxide-induced RLE-6TN cells. miR-204-3p plays a negative regulatory role in silicosis fibrosis.
4.Research progress in hydrogels in tissue engineering trachea
Wenxuan CHEN ; Yibo SHAN ; Fei SUN ; Zhiming SHEN ; Yi LU ; Jianwei ZHU ; Lei YUAN ; Hongcan SHI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1195-1199
In cases where a tracheal injury exceeds half the length of the adult trachea or one-third of the length of the child trachea, it becomes difficult to perform end-to-end anastomosis after tracheal resection due to excessive tension at the anastomosis site. In such cases, tracheal replacement therapy is required. Advances in tissue engineering technology have led to the development of tissue engineering tracheal substitutes, which have promising applications. Hydrogels, which are highly hydrated and possess a good three-dimensional network structure, biocompatibility, low immunogenicity, biodegradability, and modifiability, have had wide applications in the field of tissue engineering. This article provides a review of the characteristics, advantages, disadvantages, and effects of various hydrogels commonly used in tissue engineering trachea in recent years. Additionally, the article discusses and offers prospects for the future application of hydrogels in the field of tissue engineering trachea.
5.Thymosin α1 alleviates pulpitis by inhibiting ferroptosis of dental pulp cells.
Jie WU ; Qimei GONG ; Wenxuan LIU ; Aijia CHEN ; Zekai LIAO ; Yihua HUANG ; Wenkai JIANG ; Zhongchun TONG
International Journal of Oral Science 2025;17(1):68-68
Tooth pulpitis is a prevalent oral disorder. Understanding the underlying mechanisms of pulpitis and developing effective treatment strategies hold great significance. Ferroptosis has recently emerged as a new form of cell death, but the role of ferroptosis in pulpitis remains largely unknown. In our study, single-cell RNA sequencing (scRNA-seq) was used to identify cellular heterogeneity between 3 pulpitis tissue and 3 healthy pulp tissue, and explored ferroptosis occurrence in pulpitis tissue and inflamed dental pulp cells (DPCs). In scRNA-seq, 40 231 cells (Pulpitis: 17 814; Healthy pulp: 22 417) were captured, and visualized into 12 distinct cell clusters. Differentially expressed ferroptosis-related genes (DE-FRGs) were almost presented in each cluster in pulpitis vs healthy pulp. ROS and Fe2+ levels significantly rose, and immunohistochemistry showed low expression of GPX4 and high expression of PTGS2 in pulpitis. In LPS-stimulated DPCs, thymosin α1 increased the expression of GPX4 and FTL, and decreased expression of TNF-α, IL-1β, IL-6, and Fe2+ levels. In rat pulpitis models, both prothymosin α (PTMA, precursor of thymosin α1) gelatin sponge placed at the hole of pulp (LPS-P(gs)) and PTMA injection in pulp (LPS-P(i)) significantly reduced infiltration of inflammatory cells and expression of PTGS2, and increased the expression of GPX4. In RNA sequencing, the expression of DE-FRGs were reversed when thymosin α1 were added in LPS-stimulated DPCs. Collectively, single-cell atlas reveals cellular heterogeneity between pulpitis and healthy pulp, and ferroptosis occurrence in pulpitis. Thymosin α1 may reduce ferroptosis in DPCs to alleviate pulpitis and thus potentially has the ability to treat pulpitis.
Ferroptosis/drug effects*
;
Dental Pulp/drug effects*
;
Animals
;
Pulpitis/pathology*
;
Rats
;
Thymalfasin/pharmacology*
;
Humans
;
Male
;
Thymosin/pharmacology*
;
Disease Models, Animal
;
Rats, Sprague-Dawley
6.An observational study on the clinical effects of in-line mechanical in-exsufflation in mechanical ventilated patients.
Bilin WEI ; Huifang ZHENG ; Xiang SI ; Wenxuan YU ; Xiangru CHEN ; Hao YUAN ; Fei PEI ; Xiangdong GUAN
Chinese Critical Care Medicine 2025;37(3):262-267
OBJECTIVE:
To evaluate the safety and clinical therapeutic effect of in-line mechanical in-exsufflation to assist sputum clearance in patients with invasive mechanical ventilation.
METHODS:
A prospective observational study was conducted at the department of critical care medicine, the First Affiliated Hospital of Sun Yat-sen University from April 2022 to May 2023. Patients who were invasively ventilated and treated with in-line mechanical in-exsufflation to assist sputum clearance were enrolled. Baseline data were collected. Sputum viscosity, oxygenation index, parameters of ventilatory function and respiratory mechanics, clinical pulmonary infection score (CPIS) and vital signs before and after day 1, 2, 3, 5, 7 of use of the in-line mechanical in-exsufflation were assessed and recorded. Statistical analyses were performed by using generalized estimating equation (GEE).
RESULTS:
A total of 13 invasively ventilated patients using in-line mechanical in-exsufflation were included, all of whom were male and had respiratory failure, with the main cause being cervical spinal cord injury/high-level paraplegia (38.46%). Before the use of the in-line mechanical in-exsufflation, the proportion of patients with sputum viscosity of grade III was 38.46% (5/13) and decreased to 22.22% (2/9) 7 days after treatment with in-line mechanical in-exsufflation. With the prolonged use of the in-line mechanical in-exsufflation, the patients' CPIS scores tended to decrease significantly, with a mean decrease of 0.5 points per day (P < 0.01). Oxygenation improved significantly, with the oxygenation index (PaO2/FiO2) increasing by a mean of 23.3 mmHg (1 mmHg ≈ 0.133 kPa) per day and the arterial partial pressure of oxygen increasing by a mean of 12.6 mmHg per day (both P < 0.01). Compared to baseline, the respiratory mechanics of the patients improved significantly 7 days after in-line mechanical in-exsufflation use, with a significant increase in the compliance of respiratory system (Cst) [mL/cmH2O (1 cmH2O ≈ 0.098 kPa): 55.6 (50.0, 58.0) vs. 40.9 (37.5, 50.0), P < 0.01], and both the airway resistance and driving pressure (DP) were significantly decreased [airway resistance (cmH2O×L-1×s-1): 9.6 (6.9, 10.5) vs. 12.0 (10.0, 13.0), DP (cmH2O): 9.0 (9.0, 12.0) vs. 11.0 (10.0, 15.0), both P < 0.01]. At the same time, no new lung collapse was observed during the treatment period. No significant discomfort was reported by patients, and there were no substantial changes in heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial pressure before and after the in-line mechanical in-exsufflation treatment.
CONCLUSIONS
The combined use of the in-line mechanical in-exsufflation to assist sputum clearance in patients on invasive mechanical ventilation can effectively improve sputum characteristics, oxygenation and respiratory mechanics. The in-line mechanical in-exsufflation was well tolerated by the patients, with no treatment-related adverse events, which demonstrated its effectiveness and safety.
Humans
;
Prospective Studies
;
Respiration, Artificial/methods*
;
Respiratory Insufficiency/therapy*
;
Sputum
7.Bioactivity-guided discovery of antiviral templichalasins A‒C from the endophytic fungus Aspergillus templicola.
Teng CAI ; Jingzu SUN ; Wenxuan CHEN ; Qiang HE ; Baosong CHEN ; Yulong HE ; Peng ZHANG ; Yanhong WEI ; Hongwei LIU ; Xiaofeng CAI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):754-761
The bioactivity-guided isolation of potentially active natural products has been widely utilized in pharmaceutical discovery. In this study, by screening fungal extracts against coxsackievirus B3 (CVB3), three new aspochalasins, templichalasins A‒C (1‒3), along with six known aspochalasins (4‒9) were isolated from an active extract derived from the endophytic fungus Aspergillus templicola LHWf045. Compound 1 features a unique 5/6/5/7/5 pentacyclic ring system, while compounds 2 and 3 possess unusual 5/6/6/7 tetracyclic skeletons. Their structures were characterized through extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Additionally, we demonstrated that compound 4 can be readily converted into compounds 1‒3 under mild acidic conditions and proposed a plausible mechanism for this conversion. Bioactivity evaluation of compounds 1‒9 against CVB3 revealed the inhibitory effects of all compounds against the virus. Notably, compound 9 exhibited superior antiviral activity, surpassing the commercial drug ribavirin in selectivity index (SI) value.
Antiviral Agents/isolation & purification*
;
Aspergillus/chemistry*
;
Molecular Structure
;
Enterovirus B, Human/drug effects*
;
Endophytes/chemistry*
;
Cytochalasins/isolation & purification*
;
Drug Discovery
;
Humans
8.Health Risk Assessment of Employees Exposed to Chlorination By-products of Recreational Water in Large Amusement Parks in Shanghai
Cao WEIZHAO ; Zheng YIMING ; Zhao WENXUAN ; Shi LISHA ; Zhang YUNHUI ; Zhang LIJUN ; Chen JIAN
Biomedical and Environmental Sciences 2024;37(8):865-875
Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks. Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework. Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits. Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
9.Immune reconstitution and influencing factors in HIV infected men who have sex with men with access to antiviral therapy in Guangxi Zhuang Autonomous Region from 2005 to 2021
Ni CHEN ; He JIANG ; Huanhuan CHEN ; Qiuying ZHU ; Xiuling WU ; Jianjun LI ; Nengxiu LIANG ; Qin MENG ; Xuanhua LIU ; Jinghua HUANG ; Wenxuan HOU ; Zhaoquan WANG ; Guanghua LAN
Chinese Journal of Epidemiology 2024;45(4):529-535
Objective:To analyze immune reconstitution and influencing factors in HIV infected men who have sex with men (MSM) with access to antiviral therapy (ART) in Guangxi Zhuang Autonomous Region (Guangxi) during 2005-2021.Methods:The data were collected from Chinese Disease Prevention and Control Information System. The study subjects were HIV infected MSM with access to the initial ART for ≥24 weeks in Guangxi from 2005 to 2021 and HIV RNA lower than the detection limit within 24 months. The proportion of infected MSM who had immune reconstitution after ART was calculated. Cox proportional hazard regression model was used to analyze the influencing factors of immune reconstitution. Software SPSS 24.0 was used for statistical analysis.Results:A total of 3 200 HIV infected MSM were enrolled, in whom 15.56 % (498/3 200) had no immune reconstitution, 14.78% (473/3 200) had moderate immune reconstitution, and the rate of complete immune reconstitution was 69.66% (2 229/3 200). The M ( Q1, Q3) of ART time for immune reconstitution was 12 (5, 27) months. Multivariate Cox proportional risk regression model analysis results showed that compared with those with initial ART at age ≥30 years, WHO clinical stage Ⅲ/Ⅳ illness, baseline BMI <18.50 kg/m 2 and baseline CD4 +T lymphocyte (CD4) counts <200 cells/μl, HIV infected MSM with initial ART at age <30 years, WHO clinical stageⅠ/Ⅱ illness, baseline BMI≥24.00 kg/m 2 and baseline CD4 counts ≥200 cells/μl were more likely to have complete immune reconstitution. Conclusions:In the HIV infected MSM in Guangxi, failures to achieve moderate and complete immune reconstitution were observed. Surveillance and ART regimen should be improved for key populations, such as those with older age and low baseline CD4 counts.
10.Analysis on disease burden of digestive system cancers in population in China
Zhangyan LYU ; Wenxuan LI ; Guojin SI ; Yacong ZHANG ; Mengbo XING ; Yubei HUANG ; Ben LIU ; Fangfang SONG ; Fengju SONG ; Kexin CHEN
Chinese Journal of Epidemiology 2024;45(5):633-639
Objective:To explore the incidence and mortality of digestive system cancers, and the trend of the disease burden attributed to different risk factors in population in China.Methods:Data were obtained from the GLOBOCAN 2020 and the Global Burden of Disease Study in 2019 databases and only the data from the Chinese population were included. Using Excel 2019 and R 4.2.1 software, indicators including age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), age-standardized disability-adjusted life year (DALY) rate and its rate of change were used to illustrate the disease burden of digestive system cancers attributed to different factors and their trends.Results:In 2020, the ASIR of digestive system cancers in China was 83.00/100 000, and the ASMR was 63.80/100 000. The numbers of digestive system cancer cases and deaths increased with age, and more cases and deaths occurred in men than in women in all age groups. The age-standardized DALY rate of esophageal cancer, gastric cancer and liver cancers showed decreasing trends in China from 1990 to 2019 (rate of change: -45.26%, -46.87%, and -65.63%, respectively), whereas the age-standardized DALY rate of pancreatic cancer, colorectal cancer and gallbladder and biliary tract cancer showed increasing trends (rate of change: 67.61%, 30.52%, and 7.21%, respectively). The trend of the mortality rate was consistent with the DALY rate. Compared with the age-standardized DALY rate attributed to behavioral factors, the annual proportion of the age-standardized DALY rate attributed to metabolic factors to the total age-standardized DALY rate of esophageal cancer, liver cancer, pancreatic cancer, and colorectal cancer increased from 1990 to 2019. There was no significant change in the rank of age-standardized DALY rate of gastric cancer, liver cancer, pancreatic cancer, and gallbladder and biliary tract cancer attributed to different risk factors in China from 1990 to 2019, but the rank of certain attributed risk factors for the age-standardized DALY rate of esophageal cancer and colorectal cancer moved ahead (esophageal cancer: high BMI; colorectal cancer: low milk intake, and low whole-grain intake).Conclusions:The incidence and mortality of digestive system cancers was serious in China in 2020, and the annual proportion of the disease burden of digestive system cancers attributed to metabolic factors increased from 1990 to 2019. The rank of attributed risk factors for several digestive system cancers changed significantly.

Result Analysis
Print
Save
E-mail