1.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
3.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
5.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
7.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
9.Effect of Video-based Educational Intervention Combined with Maternal Presence on Perioperative Adverse Outcomes in Preschool Children under General Anesthesia
Jiayu TAN ; Fengqiu GONG ; Wenqi HUANG ; Xia FENG ; Qiongfang ZHU ; Yubo KANG ; Wenyan WU ; Xiuhong LI
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):519-527
ObjectiveTo investigate the effect of video-based educational intervention combined with maternal presence on perioperative adverse outcomes in preschool children undergoing general anesthesia, including cooperation in anesthesia induction, perioperative anxiety, pain and agitation during recovery. MethodsA total of 300 preschool children scheduled for general anesthesia in our hospital from June to December 2023 were randomly assigned to control group (n=150) and intervention group (n=150). The control group received routine recovery care. For the intervention group, in addition to routine recovery care, a preoperative visit was scheduled one day before surgery. During this visit, mothers were guided to watch anesthesia videos with their children. During the waiting period in the operating room and 30 minutes after awakening, the mothers were guided to accompany the children for more than 30 minutes. Recovery conditions were recorded using the surgical anesthesia information system, and the children’s anesthetic induction compliance, perioperative anxiety, pain, and agitation were evaluated and recorded using the modified Yale Preoperative Anxiety Scale (m-YPAS), the Induction Compliance Scale (ICC), the Children’s Pain Behavior Scale (FLACC), and the Pediatric Agitation and Emergence Delirium Scale (PAED). ResultsOn the preoperative visit day, there were no statistically significant differences in baseline data between the two groups (P > 0.05). For perioperative anxiety, the m-YPAS scores of the intervention group were significantly lower than those of the control group, both when entering the operating room waiting area (35.27±6.48 vs. 41.79±6.68, P < 0.05) and 30 minutes after postoperative recovery (20.13±7.05 vs. 35.75±9.51, P < 0.05). In terms of anesthesia induction cooperation, the ICC scores of the intervention group were significantly lower than those of the control group (1.84±0.95 vs. 3.17±0.62, P < 0.05), and the proportion of good induction cooperation was significantly higher than that of the control group (24.00% vs. 12.67%, P < 0.05). There was no significant difference in awakening duration between the two groups, but the intervention group had a significantly shorter length of stay in the post-anesthesia care unit than the control group (0.90±0.29 hours vs. 1.29±0.42 hours, P < 0.001). For perioperative agitation, the PAED scores of the intervention group were significantly lower than those of the control group (entering in the operating room waiting area: 8.5 vs. 9.2, P < 0.05; 30 minutes after postoperative recovery: 4.2 vs. 7.8, P < 0.05). In terms of pain scores, the FLACC scores of the intervention group were also significantly lower than those of the control group, both when entering the operating room waiting area ( 5.3 vs. 6.7, P < 0.05; 30 minutes after postoperative recovery: 2.1 vs. 4.9, P < 0.05). ConclusionsVideo-based educational intervention combined with maternal presence reduces the perioperative anxiety, pain and agitation of preschool children undergoing general anesthesia, and improved the compliance of anesthesia induction. It is recommended to promote this intervention measure in clinical practice.
10.A machine learning-based trajectory predictive modeling method for manual acupuncture manipulation.
Jian KANG ; Li LI ; Shu WANG ; Xiaonong FAN ; Jie CHEN ; Jinniu LI ; Wenqi ZHANG ; Yuhe WEI ; Ziyi CHEN ; Jingqi YANG ; Jingwen YANG ; Chong SU
Chinese Acupuncture & Moxibustion 2025;45(9):1221-1232
OBJECTIVE:
To propose a machine learning-based method for predicting the trajectories during manual acupuncture manipulation (MAM), aiming to improve the precision and consistency of acupuncture practitioner' operation and provide the real-time suggestions on MAM error correction.
METHODS:
Computer vision technology was used to analyze the hand micromotion when holding needle during acupuncture, and provide a three-dimensional coordinate description method of the index finger joints of the holding hand. Focusing on the 4 typical motions of MAM, a machine learning-based MAM trajectory predictive model was designed. By integrating the changes of phalangeal joint angle and hand skeletal information of acupuncture practitioner, the motion trajectory of the index finger joint was predicted accurately. Besides, the roles of machine learning-based MAM trajectory predictive model in the skill transmission of acupuncture manipulation were verified by stratified randomized controlled trial.
RESULTS:
The performance of MAM trajectory predictive model, based on the long short-term memory network (LSTM), obtained the highest stability and precision, up to 98%. The learning effect was improved when the model applied to the skill transmission of acupuncture manipulation.
CONCLUSION
The machine learning-based MAM predictive model provides acupuncture practitioner with precise action prediction and feedback. It is valuable and significant for the inheritance and error correction of manual operation of acupuncture.
Humans
;
Acupuncture Therapy/instrumentation*
;
Machine Learning
;
Adult
;
Male
;
Female

Result Analysis
Print
Save
E-mail