1.Effect of Dictamni Cortex on Intestinal Barrier Damage by Untargeted Metabolomics and Targeted Metabolomics for Short-chain Fatty Acids
Xiaomin XU ; Donghua YU ; Yu WANG ; Pingping CHEN ; Jiameixue WO ; Suxia JIA ; Wenkai HU ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):40-47
ObjectiveThis study aims to investigate the effect of Dictamni Cortex on intestinal barrier damage in rats and its mechanism by untargeted metabolomics and targeted metabolomics for short-chain fatty acids (SCFAs). MethodsRats were randomly divided into a control group, a high-dose group of Dictamni Cortex (8.1 g·kg-1), a medium-dose group (2.7 g·kg-1), and a low-dose group (0.9 g·kg-1). Except for the control group, the other groups were administered different doses of Dictamni Cortex by gavage for eight consecutive weeks. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in the ileal tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the level of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), in the ileal tissue of rats. Quantitative real-time fluorescence polymerase chain reaction (Real-time PCR) technology was used to detect the expression level of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1 mRNAs, in the ileal tissue of rats to preliminarily explore the effects of Dictamni Cortex on intestinal damage. The dose with the most significant toxic phenotype was selected to further reveal the effects of Dictamni Cortex on the metabolic profile of ileal tissue in rats by non-targeted metabolomics combined with targeted metabolomics for SCFAs. ResultsCompared with the control group, all doses of Dictamni Cortex induced varying degrees of pathological damage in the ileum, increased TNF-α (P<0.01), IL-6 (P<0.01), and IL-1β (P<0.01) levels in the ileal tissue, and decreased the expression level of ZO-1 (P<0.05, P<0.01), Occludin (P<0.01), and Claudin-1 (P<0.05) in the ileal tissue, with the high-dose group showing the most significant toxic phenotypes. The damage mechanisms of the high-dose group of Dictamni Cortex on the ileal tissue were further explored by integrating non-targeted metabolomics and targeted metabolomics for SCFAs. The non-targeted metabolomics results showed that 21 differential metabolites were identified in the control group and the high-dose group. Compared with that in the control group, after Dictamni Cortex intervention, the level of 14 metabolites was significantly increased (P<0.05, P<0.01), and the level of seven metabolites was significantly decreased (P<0.05, P<0.01) in the ileal contents. These metabolites collectively acted on 10 related metabolic pathways, including glycerophospholipids and primary bile acid biosynthesis. The quantitative data of targeted metabolomics for SCFAs showed that Dictamni Cortex intervention disrupted the level of propionic acid, butyric acid, acetic acid, caproic acid, isobutyric acid, isovaleric acid, valeric acid, and isocaproic acid in the ileal contents of rats. Compared with those in the control group, the level of isobutyric acid, isovaleric acid, and valeric acid were significantly increased, while the level of propionic acid, butyric acid, and acetic acid were significantly decreased in the ileal contents of rats after Dictamni Cortex intervention (P<0.05, P<0.01). ConclusionDictamni Cortex can induce intestinal damage by regulating glycerophospholipid metabolism, primary bile acid biosynthesis, and metabolic pathways for SCFAs.
2.Thymosin α1 alleviates pulpitis by inhibiting ferroptosis of dental pulp cells.
Jie WU ; Qimei GONG ; Wenxuan LIU ; Aijia CHEN ; Zekai LIAO ; Yihua HUANG ; Wenkai JIANG ; Zhongchun TONG
International Journal of Oral Science 2025;17(1):68-68
Tooth pulpitis is a prevalent oral disorder. Understanding the underlying mechanisms of pulpitis and developing effective treatment strategies hold great significance. Ferroptosis has recently emerged as a new form of cell death, but the role of ferroptosis in pulpitis remains largely unknown. In our study, single-cell RNA sequencing (scRNA-seq) was used to identify cellular heterogeneity between 3 pulpitis tissue and 3 healthy pulp tissue, and explored ferroptosis occurrence in pulpitis tissue and inflamed dental pulp cells (DPCs). In scRNA-seq, 40 231 cells (Pulpitis: 17 814; Healthy pulp: 22 417) were captured, and visualized into 12 distinct cell clusters. Differentially expressed ferroptosis-related genes (DE-FRGs) were almost presented in each cluster in pulpitis vs healthy pulp. ROS and Fe2+ levels significantly rose, and immunohistochemistry showed low expression of GPX4 and high expression of PTGS2 in pulpitis. In LPS-stimulated DPCs, thymosin α1 increased the expression of GPX4 and FTL, and decreased expression of TNF-α, IL-1β, IL-6, and Fe2+ levels. In rat pulpitis models, both prothymosin α (PTMA, precursor of thymosin α1) gelatin sponge placed at the hole of pulp (LPS-P(gs)) and PTMA injection in pulp (LPS-P(i)) significantly reduced infiltration of inflammatory cells and expression of PTGS2, and increased the expression of GPX4. In RNA sequencing, the expression of DE-FRGs were reversed when thymosin α1 were added in LPS-stimulated DPCs. Collectively, single-cell atlas reveals cellular heterogeneity between pulpitis and healthy pulp, and ferroptosis occurrence in pulpitis. Thymosin α1 may reduce ferroptosis in DPCs to alleviate pulpitis and thus potentially has the ability to treat pulpitis.
Ferroptosis/drug effects*
;
Dental Pulp/drug effects*
;
Animals
;
Pulpitis/pathology*
;
Rats
;
Thymalfasin/pharmacology*
;
Humans
;
Male
;
Thymosin/pharmacology*
;
Disease Models, Animal
;
Rats, Sprague-Dawley
3.Correlation of enzyme activities and genotype with clinical manifestations in Chinese patients of different sexes with classical and late-onset Fabry disease.
Wenkai GUO ; Yuansheng XIE ; Pengcheng JI ; Qinggang LI ; Peng WANG ; Guangyan CAI ; Xiangmei CHEN
Frontiers of Medicine 2025;19(3):523-537
Fabry disease, a rare genetic disorder affecting multiple organs, has understudied correlations among enzyme activity, genotype, and clinical manifestations in patients of different sexes with classical and late-onset phenotypes. In this study, clinical data, α-Gal A activity, and GLA gene test results of 311 patients, who were categorized by classical and late-onset phenotypes, ⩽5% and > 5% of the normal mean value of enzyme activity, and truncated and nontruncated mutation groups, were collected. The common clinical manifestations of Fabry disease included acroparesthesia, hypohidrosis/anhidrosis, neuropsychiatric system, and renal and cardiovascular involvement. Multiorgan involvement was higher in males and classical phenotype patients. In both sexes, classical patients commonly presented with acroparesthesia and multiorgan involvement, whereas late-onset patients showed renal, neuropsychiatric, and cardiovascular involvement. Male and classical patients had lower enzyme activity than female and late-onset patients, respectively. Classical males with enzyme activity of ⩽5% of the normal mean level showed higher multiorgan involvement frequency than those with enzyme activity of > 5%, whereas no significant difference was observed among females. Ninety-five gene mutation sites were detected, with significant phenotype heterogeneity in patients with the same mutation. No significant difference in enzyme activity or clinical manifestations was observed between truncated and nontruncated mutations. Overall, male patients with Fabry disease, regardless of classical or late-onset phenotype, have a higher frequency of multiple-organ involvement and lower α-Gal A activity than female patients. α-Gal A activity was closely correlated with clinical symptoms in males but weakly correlated with clinical manifestations in females. The clinical manifestations of patients with the same mutation are heterogeneous, and the correlation between gene mutation and enzyme activity or clinical manifestation is weak.
Adolescent
;
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Young Adult
;
Age of Onset
;
alpha-Galactosidase/metabolism*
;
China
;
Fabry Disease/enzymology*
;
Genotype
;
Mutation
;
Phenotype
;
Sex Factors
;
East Asian People/genetics*
4.Dental and maxillofacial regeneration and translation based on developmental principles
Shuyan CHEN ; Xiaotong GAO ; Wenkai JIANG ; Bingdong SUI
Journal of Practical Stomatology 2024;40(6):741-746
In the various diseases of oral and maxillofacial system,the incidence of tissue defects is high and harmful,the reconstruction of the morphology and function is difficult,which seriously affects the physiological and mental health of the patients.Dental and maxillofacial regeneration based on stem cells and tissue engineering technology is a potential way for the treatment of dental and maxillofacial defects,and is also the focus of current international competition.Based on the possible mechanism of stem cells regulating organ development,this paper reviews the current status of dental and maxillofacial regeneration and translation,and proposes future direction in this field in order to pro-mote the sustainable development of dental and maxillofacial regeneration and translation.
5.Riluzole interferes with the activation of NLRP3 inflammasome in microglia of rats with spinal cord injury
Tao LIU ; Wenkai ZHANG ; Ziqian MA ; Yan ZHANG ; Xueming CHEN
Chinese Journal of Tissue Engineering Research 2024;28(7):1036-1042
BACKGROUND:Previous animal studies have shown that riluzole can inhibit neuroinflammatory response after spinal cord injury and promote functional recovery in injured rats,but the study on whether it can regulate the expression of nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome in the acute stage is lacking. OBJECTIVE:To observe whether riluzole can reduce microglial pyroptosis and promote functional recovery after spinal cord injury by modulating NLRP3 inflammasome through animal experiments,histological experiments and molecular biology experiments. METHODS:Female SD rats were divided into sham operation,model and riluzole groups,with 12 rats in each group.In addition to the sham operation group,T10 spinal cord injury was conducted in rats.The model group was treated with intraperitoneal administration of riluzole with solvent cyclodextrin.The riluzole group was treated with a 4 mg/kg dose of riluzole injection.The effect of riluzole on motor function recovery was assessed using the BBB score and inclined plane test.The recovery of sensory-evoked potential and motor-evoked potential was measured by electrophysiology.Hematoxylin-eosin staining was used to evaluate spinal cord tissue repair.The regulatory effects of riluzole on NLRP3,Caspase-1 and gasdermin D protein expression in spinal cord tissues were detected by western blot assay.ELISA was utilized to detect the expression levels of inflammatory factors interleukin-1β and interleukin-18.The effects of riluzole on the expression of NLRP3,Caspase-1,gasdermin D and interleukin-1β in microglial cells of the injured spinal cord were determined by immunofluorescence staining. RESULTS AND CONCLUSION:(1)At 35 days after spinal cord injury,BBB score and inclined plane test score in the riluzole group were higher than those in the model group(P<0.05).(2)At 3 days after spinal cord injury,the protein expressions of NLRP3,cleaved Caspase-1,gasdermin D-N(N-terminal domain),interleukin-1β,and interleukin-18 in the spinal cord homogenate of the riluzole group were significantly lower than those of the model group(P<0.05).(3)At 3 days after spinal cord injury,the fluorescence intensity of NLRP3,Caspase-1,gasdermin D and interleukin-1β in the riluzole group was significantly lower than that in the model group(P<0.05).(4)At day 35 after spinal cord injury,hematoxylin-eosin staining showed that the area of spinal cord injury in the riluzole group was smaller than that in the model group.Electrophysiological tests showed that the latency periods of sensory-evoked potential and motor-evoked potential in the riluzole group were shorter than those in the model group,and the latency period of wave amplitude in the riluzole group was higher than that in the model group.(5)These results suggest that riluzole can promote the repair of injured spinal cord tissue,promote the repair of nerve conduction function,and further promote the recovery of motor function in rats with spinal cord injury,which may be achieved through the regulation of NLRP3 inflammasome and the reduction of microglial pyroptosis.
6.Circ0005512 promotes microglia/macrophage pyroptosis after spinal cord injury in female rats
Yan ZHANG ; Wenkai ZHANG ; Wenxiu ZHANG ; Tao LIU ; Ziqian MA ; Xueming CHEN
Chinese Journal of Tissue Engineering Research 2024;28(31):5029-5035
BACKGROUND:Neuroinflammation is an important factor leading to secondary spinal cord injury,and microglia/macrophage pyroptosis is a significant part of post-spinal cord injury neuroinflammation.Studies have shown that microglia/macrophage undergoes pyroptosis after spinal cord injury,but the regulatory mechanism of circular RNA(circRNA)in microglia/macrophage pyroptosis after spinal cord injury remains unclear. OBJECTIVE:To investigate the role and mechanism of circRNA0005512 in regulating microglia/macrophage pyroptosis after spinal cord injury. METHODS:Female Wistar rats were divided into sham group and spinal cord injury group.Motor function was evaluated using the Basso,Beattie,and Bresnahan(BBB)scale.Cavity volume was assessed by hematoxylin-eosin staining.Differential expression of circRNA in spinal cord tissue was screened using RNA-sequencing and circ0005512 was validated by real-time PCR.Immunofluorescence,western blot assay,ELISA,and real-time PCR were performed to detect cell pyroptosis in the rats and lipopolysaccharide-induced microglial cell line HAPI cell models.Gene knockdown was used to confirm the regulatory role of circRNA0005512 in microglia/macrophage pyroptosis. RESULTS AND CONCLUSION:(1)Seven days after spinal cord injury,evident cavities were observed at the injury site.Immediately after spinal cord injury,the motor function of rats was completely lost.Over time,the motor function of rats in the spinal cord injury group gradually partially recovered,and there was a significant difference in BBB scores compared to the sham group.(2)Circ0005512 was significantly upregulated according to the results of the RNA-sequencing and confirmed in both the animal and cell models.(3)Immunofluorescence,western blot assay,real-time PCR,and ELISA confirmed the significant upregulation of cell pyroptosis markers(NLRP3,GSDMD,and caspase-1)in spinal cord injury tissue and lipopolysaccharide-induced HAPI cells.(4)In the cell model,knockdown of circ0005512 resulted in significantly decreased levels of cell pyroptosis marker-NLRP3.(5)The results above indicate that circ0005512 promotes pyroptosis in microglia/macrophages after spinal cord injury.
7.Quality evaluation of Siraitiae fructus standard decoction based on UPLC fingerprint and multi-index determination
Fangping ZHANG ; Cuijie WEI ; Xiaoxia LIU ; Wenkai XIE ; Yuanyuan CHEN ; Zhiwen DUAN ; Yongwei FENG ; Minyou HE ; Roushan CHEN ; Dongmei SUN ; Lin ZHOU ; Zhenyu LI
China Pharmacist 2024;28(11):397-405
Objective To establish an ultra-high performance liquid chromatography(UPLC)fingerprint and multi-index content determination method of Siraitiae fructus standard decoction.Methods 15 batches of Siraitiae fructus from different producing areas were collected,Siraitiae fructus standard decoction was prepared according to Technical Requirements for Quality Control and Standardization of Traditional Chinese Medicine Formula Granules,and the extract rate was calculated.UPLC was used to establish the fingerprint of 15 batches of Siraitiae fructus standard decoction and determine the contents of 11-O-mogroside V,kaempferitrin and mogroside V,which were the main effective components.The chemometrics analysis was used to evaluate the quality of Siraitiae fructus standard decoction and find possible quality markers.Results The extraction rate of 15 batches Siraitiae fructus standard decoction ranged from 24.79%to 34.95%.There were 16 common peaks in the fingerprint,and 4 components were identified.The Siraitiae fructus standard decoction was divided into 2 categories by chemometrics analysis,among which samples from Liuzhou,Guangxi were in one category and samples from Guilin,Guangxi were in another category.Seven differential markers were screened out under the condition of variable importance projection value,and the order was as follows:peak 8>peak 7>peak 5>peak 12(kaempferitrin)>peak 1>peak 13>peak 4.The contents of kaempferitrin,11-O-mogroside V and mogroside V in samples from Guilin,Guangxi were slightly higher than those in samples from Liuzhou,Guangxi.Conclusion The UPLC fingerprint and content determination method established in this study are feasible,which can provide a basis for the quality evaluation of Siraitiae fructus.The results of principal component analysis show that kaempferol is likely to become a quality marker of Siraitiae fructus.
8.Research progress on breed characteristics and germplasm resources itilization of Zi goose
Mingdong HUO ; Jiaqiang DONG ; Ping LI ; Wenkai GUO ; Zhifeng CHEN ; Zhigang MA ; Nian-Dong WEI ; Yue ZOU ; Hong ZHANG ; Zhiqiang WANG ; Haotian YANG ; Caihong HAO ; Mingzhe LYU ; Yuxiang HUANG
Chinese Journal of Veterinary Science 2024;44(11):2496-2501
Zi goose is a small local variety with high fecundity,good meat quality,roughage resist-ance,strong adaptability and excellent down quality.It is an excellent female parent for cross breeding among varieties.With the rapid development of goose industry,the variety of Zi goose has not been well protected,the variety is hybrid and degraded seriously,and the number of pure Zi goose is decreasing day by day.This paper reviewed the research progress on the breeding distribu-tion and preservation status of Zi goose and the variety characteristics of Zi goose,in order to pro-vide reference for the research,protection and utilization of germplasm resources of Zi goose and the stable development of goose industry.
9.Whole-brain mapping of histaminergic projections in mouse brain
Wenkai LIN ; Lingyu XU ; Yi WANG ; Zhong CHEN
Chinese Journal of Pharmacology and Toxicology 2023;37(7):548-549
OBJECTIVE Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions.Understanding the precise structure of histaminergic network is the cor-nerstone in elucidating its function.METHODS Herein,using novel HDC-CreERT2 mice and genetic labeling strategies,we reconstructed a whole brain 3D structure of histaminergic neurons and their outputs at 0.32×0.32×2 μm3 pixel resolution with a cutting-edge fluorescence micro-optical sectioning tomography system(fMOST).And we dissect an appetite control circuit originating from the TMN to medial septal nucleus(MS)using fiber photometry,optogenetics,and chemogenetics interfer-ence.RESULTS We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions.The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stim-ulation or physiological aversive stimulation.Moreover,we reconstructed fine morphological structure of 60 hista-minergic neurons via sparse labeling,and uncovered the largely heterogeneous projection pattern of individual his-taminergic neuron.Lastly,we found that MS-projecting histaminergic circuit is functionally inhibited during food consumption,and bidirectionally modulates feeding behavior via downstream H2,but not H1,receptors on MS glutamatergic neurons.CONCLUSION Collectively,this study reveals an unprecedented whole-brain quanti-tative analysis of histaminergic projections at the meso-scopic level,providing a foundation for future functional histaminergic study.And we also demonstrate that this MS-projecting histaminergic circuit is critically involved in feeding,and H2Rs in MS glutamatergic neurons is a promising target for treating body weight problems.
10.Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS
Zhou JUEXIAO ; Zhang BIN ; Li HAOYANG ; Zhou LONGXI ; Li ZHONGXIAO ; Long YONGKANG ; Han WENKAI ; Wang MENGRAN ; Cui HUANHUAN ; Li JINGJING ; Chen WEI ; Gao XIN
Genomics, Proteomics & Bioinformatics 2022;20(5):959-973
The accurate annotation of transcription start sites(TSSs)and their usage are critical for the mechanistic understanding of gene regulation in different biological contexts.To fulfill this,specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner,and various computational tools have also been developed for in silico pre-diction of TSSs solely based on genomic sequences.Most of these computational tools cast the problem as a binary classification task on a balanced dataset,thus resulting in drastic false positive predictions when applied on the genome scale.Here,we present DeeReCT-TSS,a deep learning-based method that is capable of identifying TSSs across the whole genome based on both DNA sequence and conventional RNA sequencing data.We show that by effectively incorporating these two sources of information,DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types.Furthermore,we develop a meta-learning-based extension for simultaneous TSS annotations on 10 cell types,which enables the identification of cell type-specific TSSs.Finally,we demonstrate the high precision of DeeReCT-TSS on two independent datasets by correlating our predicted TSSs with experimentally defined TSS chromatin states.The source code for DeeReCT-TSS is available at https://github.-com/JoshuaChou2018/DeeReCT-TSS_release and https://ngdc.cncb.ac.cn/biocode/tools/BT007316.

Result Analysis
Print
Save
E-mail