1.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
2.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
3.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
4.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
5.Combination Therapy of Pyrotinib and Metronomic Vinorelbine in HER2+ Advanced Breast Cancer after Trastuzumab Failure (PROVE): A Prospective Phase 2 Study
Chunfang HAO ; Xu WANG ; Yehui SHI ; Zhongsheng TONG ; Shufen LI ; Xiaodong LIU ; Lan ZHANG ; Jie ZHANG ; Wenjing MENG ; Li ZHANG
Cancer Research and Treatment 2025;57(2):434-442
Purpose:
Approximately 50%-74% of patients with metastatic human epidermal growth factor receptor 2 (HER2)–positive breast cancer do not respond to trastuzumab, with 75% of treated patients experiencing disease progression within a year. The combination of pyrotinib and capecitabine has showed efficacy in these patients. This study evaluates the efficacy and safety of pyrotinib combined with metronomic vinorelbine for trastuzumab-pretreated HER2-positive advanced breast cancer patients.
Materials and Methods:
In this phase 2 trial, patients aged 18-75 years with HER2-positive advanced breast cancer who had previously failed trastuzumab treatment were enrolled to receive pyrotinib 400 mg daily in combination with vinorelbine 40mg thrice weekly. The primary endpoint was progression-free survival (PFS), while secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety.
Results:
From October 21, 2019, to January 21, 2022, 36 patients were enrolled and received at least one dose of study treatment. At the cutoff date, 20 experienced disease progression or death. With a median follow-up duration of 35 months, the median PFS was 13.5 months (95% confidence interval [CI], 8.3 to 18.5). With all patients evaluated, an ORR of 38.9% (95% CI, 23.1 to 56.5) and a DCR of 83.3% (95% CI, 67.2 to 93.6) were achieved. The median OS was not reached. Grade 3 adverse events (AEs) were observed in 17 patients, with diarrhea being the most common (27.8%), followed by vomiting (8.3%) and stomachache (5.6%). There were no grade 4/5 AEs.
Conclusion
Pyrotinib combined with metronomic vinorelbine showed promising efficacy and an acceptable safety profile in HER2-positive advanced breast cancer patients after trastuzumab failure.
6.Early clinical efficacy of Yiqi Tongluo Decoction on ischemic cerebrovascular disease after interventional therapy
Qinghua WANG ; Gesheng WANG ; Ruiping LI ; Can ZHENG ; Wenjing LI ; Jiaqi CHEN ; Kaihang GUO ; Xiaobo DONG ; Wenxin WANG ; Rongjuan GUO ; Le WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):108-121
Objective:
To observe the clinical efficacy and safety of Yiqi Tongluo Decoction in the intervention of early traditional Chinese medicine (TCM) syndromes after ischemic cerebrovascular disease (ICVD) intervention.
Methods:
From October 2020 to July 2023, a randomized, double-blind, placebo-controlled study was conducted to include 60 patients with qi deficiency, blood stasis, and phlegm obstruction syndrome after ICVD interventional therapy. They were assigned to the Yiqi Tongluo Decoction treatment group (30 cases) and the TCM placebo routine treatment control group (30 cases) according to the randomized block design. Both groups received routine standardized treatment of Western medicine, including dual antiplatelet, lipid regulation, and control of risk factors for cerebrovascular disease. The treatment group was treated with Yiqi Tongluo Decoction based on the control group. The course of treatment was 60 days and follow-up was carried out 2 and 6 months after the operation. The improvement of qi deficiency syndrome, blood stasis syndrome, phlegm syndrome score and TCM syndrome score, modified Rankin score (mRS), Barthel index (BI) score, Fatty acid-binding protein 4 (FABP4) level, incidence of transient ischemic attack (TIA) and ischemic stroke (IS) and incidence of adverse reactions, Head and neck CT angiography (CTA) or digital subtraction angiography (DSA) examination were collected. The clinical efficacy of the patients 2 months after the operation was taken as the main outcome index to preliminarily evaluate the early and long-term efficacy of Yiqi Tongluo Decoction after the ICVD intervention. The early and long-term clinical efficacy and safety of Western medicine standardized treatment combined with TCM Yiqi Tongluo Decoction on patients with qi deficiency, blood stasis and phlegm obstruction syndrome after ICVD intervention were evaluated. The safety of Yiqi Tongluo Decoction in the treatment of patients after ICVD intervention with white blood cell (WBC), C-reactive protein (CRP), fibrinogen (FIB), plasminogen time (PT), recurrence of cerebral ischaemia and restenosis in patients at 2 and 6 months after treatment were evaluated.
Results:
Compared to the control group, the TCM syndrome scores for qi deficiency, blood stasis and phlegm syndrome in the treatment group reduced significantly, the clinical efficacy improved significantly, the mRS score and FABP4 were reduced, and the BI score was increased. Adverse events such as cerebral ischaemia were fewer in the treatment group than in the control group, but the difference was not statistically significant; levels of CRP, WBC and PT were reduced, and levels of FIB were reduced at 6 months post-treatment, all P<0.01, and images were intuitively compared. The treatment group was superior to the control group.
Conclusion
Yiqi Tongluo Decoction combined with Western medicine standard treatment can improve the early clinical efficacy of ICVD patients with qi deficiency, blood stasis and phlegm obstruction syndrome after interventional surgery, improve neurological impairment and daily living ability, reduce the state of qi deficiency syndrome, blood stasis syndrome and phlegm syndrome after interventional surgery, and improve the clinical efficacy of TCM. At the same time, it can reduce the level of FABP4, the target of atherosclerosis and restenosis after interventional surgery, reduce the level of inflammation after interventional surgery in patients with ICVD, regulate coagulation function, and reduce the incidence of long-term recurrence of cerebral ischemia after interventional surgery, with good safety.
7.Effect of gallic acid in increasing the chemosensitivity of hepatocellular carcinoma HepG2 cells to sorafenib
Baikun LIU ; Zhiru WANG ; Wenjing ZHAO
Journal of Clinical Hepatology 2025;41(2):292-299
ObjectiveTo investigate the chemosensitization effect of gallic acid (GA) combined with sorafenib (Sora) on hepatocellular carcinoma HepG2 cells and related mechanisms. MethodsHepG2 cells were randomly divided into control group, GA group, Sora group, and GA+Sora group. CCK8 assay was used to measure cell viability; CompuSyn software was used to analyze combination index (CI); colony formation assay was used to evaluate the colony formation ability of cells; flow cytometry was used to measure cell apoptosis; wound healing assay and Transwell chamber assay were used to observe the migration and invasion abilities of cells; Western Blot was used to measure the expression matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and apoptosis-related proteins. HepG2 cells were subcutaneously inoculated into the lower right back of mice, and 6 days later, the mice were divided into control group, GA group, Sora group, and GA+Sora group. Tumor size and body weight were measured once a week, and drug intervention was performed for 21 days. Then the nude mice were sacrificed, and tumor weight was measured. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsThe mean IC50 values of GA and Sora for the treatment of HepG2 cells for 48 hours were 123.47±5.16 μmol/L and 9.87±0.98 μmol/L, respectively, and when Sora was combined with 70 μmol/L GA (IC30), IC50 decreased to 2.06±0.35 μmol/L; the CI value was<1 for Sora at different concentrations combined with 70 μmol/L GA. The number of cell colonies was 234.0±20.4, 147.0±12.1, 129.3±13.3, and 73.0±7.6, respectively, in the four groups, and the GA+Sora group had a significantly lower number of cell colonies than the control group, the GA group, and the Sora group (all P<0.05). After 48 hours of treatment, the cell apoptosis rate was 1.98%±0.29%, 15.17%± 1.56%, 18.65%±1.48%, and 34.60%±5.36%, respectively, in the four groups, and the GA+Sora group had a significantly higher cell apoptosis rate than the control group, the GA group, and the Sora group (all P<0.05). After 24 hours of treatment, the cell migration rate was 55.59%±5.08%, 29.34%±4.36%, 21.80%±5.16%, and 6.47%±2.75%, respectively, in the four groups, and the GA+Sora group had a significantly lower cell migration rate than the control group, the GA group, and the Sora group (all P<0.05). After 48 hours of treatment, the number of transmembrane cells was 223.7±13.0, 168.3±10.9, 155.3±29.1, and 62.7±19.7, respectively, in the four groups, and the GA+Sora group had a significantly lower number of transmembrane cells than the control group, the GA group, and the Sora group (all P<0.05). Compared with the control group, the GA group, the Sora group, and the GA+Sora group had significant reductions in the protein expression levels of MMP-2, MMP-9, and Bcl-2 (all P<0.05) and significant increases in the protein expression levels of Bax and cleaved caspase-3 (all P<0.05). Compared with the control group, the GA, Sora, and GA+Sora groups had significant reductions in tumor volume and weight (all P<0.05), and compared with the Sora group, the GA+Sora group had significant reductions in tumor volume and weight in nude mice (both P<0.05). ConclusionGA can increase the sensitivity of HepG2 cells to Sora chemotherapy, possibly by promoting cell apoptosis and inhibiting cell migration and invasion after combination with Sora.
8.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
9.Current Status of Stratified Diagnosis and Treatment of Sjögren's Syndrome and Reflections on It
Wenjing LIU ; Xinyao ZHOU ; Quan JIANG
Journal of Traditional Chinese Medicine 2025;66(3):244-250
Stratified diagnosis and treatment is a crucial approach in precision medicine, aiming to optimize medical care by grouping patients based on clinical manifestations, biomarkers, and pathological characteristics. Based on clinical stages, symptoms, age, gene expression, and pathology, research on Sjögren's syndrome (SS) has proposed various stratification methods, incorporating both traditional Chinese medicine (TCM) and Western medicine perspectives. These methods provide essential support for early diagnosis, risk assessment, and personalized treatment. Key strategies include moving SS intervention time forward, to leverage TCM's preventive principles, integrating TCM and Western tools to enhance precision, innovating clinical trial designs, developing multifactorial risk prediction models and digital imaging technologies, and constructing combined prognostic models for personalized follow-up and big data-driven treatment. These insights offer a comprehensive framework for advancing SS precision medicine.
10.Mechanism of Xinnao shutong capsule alleviating cerebral ischemia-reperfusion injury in rats by regulating ferroptosis
Huani LI ; Changhe LIU ; Xiaoyan GUO ; Xin ZHONG ; Wei ZHANG ; Wenjing GE
China Pharmacy 2025;36(3):306-311
OBJECTIVE To study the mechanism of Xinnao shutong capsule alleviating cerebral ischemia reperfusion injury (CIRI) in rats by regulating the ferroptosis pathway. METHODS SD rats were randomly divided into sham operation group, model group, Xinnao shutong low-dose, high-dose group (220, 440 mg/kg), Ginkgo biloba leaves extract group (positive control, 150 mg/kg). Each group of rats was orally administered with the corresponding medication/normal saline for 7 consecutive days. Transient occlusion of the middle cerebral artery was adopted to induce the CIRI model; the samples were taken 24 h after the operation; the cerebral infarction area of rats was detected, and the cerebral infarction rate was calculated. The pathological changes of brain tissues were observed, and the levels of lipid peroxide (LPO), malondialdehyde (MDA) and glutathione (GSH) in cerebral tissue were detected; mRNA and protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1) and glutathione peroxidase 4 (GPX4) were all detected in cerebral tissue of rats. RESULTS Compared with model group, the cerebral infarction rate, the content of total iron in cerebral tissue and serum level of LPO (except for Ginkgo biloba leaves extract group and Xinnao shutong low-dose group) were all decreased significantly in G. biloba leaves extract group and Xinnao shutong groups (P<0.05 or P<0.01); the serum level of GSH, the protein and mRNA expressions of Nrf2, HO-1 and GPX4 were all increased significantly (P<0.05 or P<0.01). The pathological damage to brain tissue was reduced, the number of nerve cells increased, the edema was alleviated, and the nuclear membrane was flattened. CONCLUSIONS Xinnao shutong capsule can inhibit ferroptosis and reduce CIRI, the mechanism of which may be associated with the activation of the Nrf2/HO-1/GPX4 signaling pathway.


Result Analysis
Print
Save
E-mail