1.Study on manipulation and stability of Imipenem and cilastatin sodium for injection in children
Xianming ZHANG ; Zengyan ZHU ; Wenjing WANG ; Xiaohuan DU
China Pharmacy 2025;36(1):101-105
OBJECTIVE To evaluate the effect of manipulation of Imipenem and cisplatin sodium (ICS) for injection on the consistency of its main drug imipenem (IPN) content, and the stability of different concentrations of ICS solution, to provide a reference for the safe and effective use of ICS in children. METHODS Three operators prepared ICS solutions according to the two commonly used dosage methods for children (10 mL or 20 mL 0.9% Sodium chloride injection to prepare the initial ICS solution and draw the required dose from the initial suspension). The content of IPN was determined by ultra-high performance liquid chromatography-tandem mass spectrometry after parallel processing. The content consistency of solutions in each group was determined according to the coefficient of variation (CV)<15% of the IPN content. ICS test solution X1 was prepared according to the instructions, and then test solutions X2 and X3 were prepared by diluting X1 with 0.9% Sodium chloride injection in the volume ratios of 1∶1 and 1∶2, which were stored at room temperature ([ 23.0±0.5) ℃], in a thermostatic water bath at 30 ℃, and in a refrigerator at 2-8 ℃. The stability of the drug solution was determined by the ratio of the IPN mass concentration measured at the specified temperature and time to the initial (0 h) mass concentration (if the ratio was≥90%, it was considered that the drug solution was stable). RESULTS CV of IPN content was <15% in each group of solutions prepared with two manipulation methods by each operator, indicating a small deviation in IPN content. The solutions at the three concentration levels were stable at room temperature for 6 h or refrigerated for 18 h. The test solutions X1 and X2 were also stable when placed at 30 ℃ for 6 h, but the IPN concentration in test solution X3 decreased by about 20% compared with that of 0 h. CONCLUSIONS The consistency of the content of IPN is good in the two commonly used methods for ICS manipulation in children. The stability of ICS solution is affected by concentration, temperature and time. Lower concentrations at higher temperatures resulted in decreased stability of IPN. Clinical attention should be paid to controlling the amount of solvent as well as temperature and time during preparation and use.
2.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
3.Association of mitochondrial DNA copy number with mild to moderate cognitive impairment and its mediating role in type 2 diabetes mellitus
Tong LIU ; Chazhen LIU ; Peiyun ZHU ; Ping LIAO ; Xin HE ; Jian QI ; Qin YAN ; Yuan LU ; Wenjing WANG
Shanghai Journal of Preventive Medicine 2025;37(7):581-585
ObjectiveTo investigate the relationship between mitochondrial DNA copy number (mtDNAcn) and cognitive dysfunction, and its mediating role between type 2 diabetes mellitus (T2DM) and cognitive dysfunction. MethodsA case-control study was conducted from May 2019 to April 2021 at the Shanghai Yangpu District Central Hospital, China. A total of 193 subjects were recruited and divided into two groups based on the Montreal Cognitive Assessment (MoCA): normal control (NC) group (n=95) and cognitive impairment group (n=98). The prevalence of T2DM was determined on the basis of medical history, while mtDNAcn in peripheral blood samples was quantified using realtime fluorescent quantitative polymerase chain reaction. ResultsUnivariate analyses revealed that the mean mtDNAcn in the cognitive impairment group was 0.76±0.37, significantly lower than that in the NC group (1.06±0.45) (P<0.05). Logistic regression analyses showed that higher mtDNAcn was associated with a reduced risk of cognitive impairment (OR=0.315, 95%CI: 0.125‒0.795). Additionaly, a statistically significant positive correlation was observed between mtDNAcn and the total MoCA score (r=0.381, P<0.01). Morever, T2DM history (OR=2.741, 95%CI: 1.002‒7.497) and elevated glycosylated hemoglobin (HbA1c) levels (OR=1.796, 95%CI: 1.190‒2.711) were identified as risk factors for cognitive impairment. Mediation analyses indicated that mtDNAcn served as a mediator between T2DM/HbA1c and the risk of cognitive impairment, with proportions of mediating effect of 9.04% and 9.18%, respectively. ConclusionPatients with mild and moderate cognitive impairment have significantly lower mtDNAcn than those with normal cognitive function. Reduced mtDNAcn is an influencing factor for cognitive dysfunction and may play a mediating role in the association between T2DM and mild to moderate cognitive impairment.
4.Molecular Mechanism of Danshen Tongluo Formula in Intervention of Coronary Artery Disease-dominated Panvascular Disease
Jiawen CHENG ; Chao LIU ; Jie WANG ; Yongmei LIU ; Wenjing LIAN ; Chengzhi HOU ; Chenyang ZHU ; Cheng MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):86-93
ObjectiveEndothelial cell dysfunction being the core link. This study explores the molecular mechanism of Danshen Tongluo formula in treating coronary artery disease-dominated panvascular disease with endothelial cell changes as the core through animal experiments and single-cell transcriptome sequencing. MethodsA rat model of coronary artery disease-dominated panvascular disease was established by ligating the left anterior coronary artery. Rats were randomized into a blank group, a model group, and a Danshen Tongluo formula (28 mg·kg-1·d-1) group. The efficacy was evaluated by examining the cardiac ultrasound, determination of the plasma level of N-terminal pro-brain natriuretic peptide, and pathological staining. After single-cell sequencing, SingleR package, public datasets, and related literature were used for annotation of the cells. Cell chat was used for intercellular communication and ligand-receptor analysis, and scmetabolism was used for metabolic analysis of endothelial cells. ResultsAnimal experiments showed that Danshen Tongluo formula reduced the N-terminal pro-brain natriuretic peptide ( NT-proBNP ) level (P<0.05), ameliorated myocardial cell damage and fibrosis, and increase left ventricular ejection fractions (LVEF) in the rat model of heart failure after myocardial infarction(P<0.05). Single-cell sequencing results showed that Danshen Tongluo formula increased the proportion of arterial endothelial cells, venous endothelial cells, and capillary-arterial endothelial cells, while reducing the proportion of capillary-venous endothelial cells. In addition, this formula increased the interaction intensity of endothelial cells with cardiomyocytes and M1 macrophages and reduced the interaction intensity of endothelial cells with fibroblasts and T cells. Danshen Tongluo formula upregulated CXCL12-CXCR4 signaling in endothelium-B cells and Ptprm-Ptprm signaling in endothelial endothelial cells, while downregulating Mif-(CD74+CXCR44) signaling in endothelium-M1 macrophages and Mif-(CD74+CD44) signaling in endothelium-M2 macrophages. It reduced the citric acid cycle, oxidative phosphorylation, and glycolysis and increased the glycolysis/oxidative phosphorylation ratio in endothelial cells. GO and KEGG enrichment analysis showed that arterial endothelial cells, venous endothelial cells, and venous capillary endothelial cells can all regulate oxidative phosphorylation, cell adhesion molecules, and tyrosine metabolism. Lymphatic endothelial cells regulate immunity and vascular constriction to participate in the metabolism of various amino acids and fatty acids. ConclusionDanshen Tongluo Formula can ameliorate coronary artery disease-dominated panvascular disease by changing the composition of endothelial cells and regulating the communication between myocardial endothelial cells and non-endothelial cells.
5.Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.
Tingting LIU ; Chao JIN ; Jing SUN ; Lina ZHU ; Chun WANG ; Feng XIAO ; Xiaochang LIU ; Liying LV ; Xiaoke YANG ; Wenjing ZHOU ; Chao TAN ; Xianli WANG ; Wei WEI
Chinese Medical Journal 2025;138(4):441-451
BACKGROUND:
G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).
METHODS:
The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.
RESULTS:
In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (T regs ), an increase in the cluster of differentiation 8 positive (CD8 + ) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8 + T cells, and induced the proportion of T regs . Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.
CONCLUSION
Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cells in RA.
G-Protein-Coupled Receptor Kinase 2/metabolism*
;
Arthritis, Rheumatoid/immunology*
;
Animals
;
Dendritic Cells/metabolism*
;
Paroxetine/therapeutic use*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Male
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Lymphocyte Activation/drug effects*
;
Female
;
T-Lymphocytes/metabolism*
;
Middle Aged
6.Impact of elevated arterial blood pressure on bioprosthetic valve calcification and failure after transcatheter aortic valve replacement.
Wenjing SHENG ; Qifeng ZHU ; Hanyi DAI ; Dao ZHOU ; Xianbao LIU
Journal of Zhejiang University. Medical sciences 2025;54(2):154-160
Transcatheter aortic valve replacement (TAVR) has emerged as the standard treatment for severe aortic stenosis, demonstrating comparable efficacy to traditional surgery in low and intermediate-risk patients. However, the bioprosthetic valves utilized in TAVR have a limited lifespan, and bioprosthetic valve failure, including calcification, rupture or infection may develop, leading to poor clinical outcomes. Elevated blood pressure has been identified as a key factor in aortic valve calcification, and its role in bioprosthetic valve failure is gaining increasing attention. Hypertension may accelerate the calcification process and exacerbate valve failure due to increased mechanical stress on the valve, activation of the renin-angiotensin system, and enhanced thrombus formation. Furthermore, elevated blood pressure interacts with prosthesis mismatch and paravalvular leak, jointly affecting valve durability. This review explores the impact of elevated blood pressure on bioprosthetic valve calcification and failure after TAVR, and emphasizes the importance of blood pressure control, optimized preoperative assessment, and appropriate valve selection in reducing valve failures.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Calcinosis/etiology*
;
Bioprosthesis
;
Heart Valve Prosthesis/adverse effects*
;
Prosthesis Failure
;
Aortic Valve Stenosis/surgery*
;
Aortic Valve/surgery*
;
Hypertension/physiopathology*
7.PKM2, the "K+ sink" in the tumor interstitial fluid.
Wenjing NA ; Wenfeng ZENG ; Kai SONG ; Youwang WANG ; Luoyang WANG ; Ziran ZHAO ; Lingtao JIN ; Ping ZHU ; Wei LIANG
Protein & Cell 2025;16(4):303-308
8.A flavin-containing monooxygenase from Schizosaccharomyces pombe: characterization and application in the synthesis of S-methyl-L-cysteine sulfoxide.
Mengka LIAN ; Zhaolin SONG ; Wenjing GAO ; Gang ZHU ; Mengjun DONG ; Yu LI ; Yihan LIU ; Fenghua WANG ; Fuping LU
Chinese Journal of Biotechnology 2025;41(1):474-485
S-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from S-methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from Schizosaccharomyces pombe (spfmo) was heterologously expressed in Escherichia coli BL21(DE3) and the enzymatic properties of the expressed protein were analyzed. The optimum catalytic conditions of the recombinant SpFMO were 30 ℃ and pH 8.0, under which the enzyme activity reached 72.77 U/g. An appropriate amount of Mg2+ improved the enzyme activity. The enzyme kinetic analysis showed that the Km and kcat/Km of SpFMO on the substrate SMC were 23.89 μmol/L and 61.71 L/(min·mmol), respectively. Under the optimal reaction conditions, the yield of SMCO synthesized from SMC catalyzed by SpFMO was 12.31% within 9 h. This study provides reference for the enzymatic synthesis of SMCO.
Schizosaccharomyces/genetics*
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Cysteine/biosynthesis*
;
Mixed Function Oxygenases/metabolism*
;
Schizosaccharomyces pombe Proteins/metabolism*
;
Oxygenases/metabolism*
;
Kinetics
9.A case-control study on gut microbiota diversity and species composition in obese/overweight children aged 2-6 years in Shanghai
Ping LIAO ; Qin YAN ; Yi ZHANG ; Xin HE ; Peiyun ZHU ; Jian QI ; Chazhen LIU ; Tong LIU ; Yan SHI ; Wenjing WANG
Journal of Environmental and Occupational Medicine 2024;41(3):243-250
Background Multiple studies have shown a close relationship between changes in gut microbiota composition and obesity, and research results are influenced by factors such as race and geographical location, but there are few studies on children. Objective To analyze the diversity of gut microbiota related to obesity in a population of 2-6 years old, observe the distribution characteristics and species differences of gut microbiota between obese/overweight and normal weight groups, and explore the association betweenobese/overweight and gut microbiota diversity. Methods Fecal samples were collected from 74 children aged 2-6 years in Shanghai, including 18 obese/overweight individuals, 6 males and 12 females (male to female ratio of 1∶2), and 56 normal weight individuals, 18 males and 38 females (male to female ratio is nearly 1∶2). The 16S rDNA was extracted from bacteria in fecal samples, followed by PCR amplification, cDNA construction, and high-throughput sequencing. Naive Bayes algorithm was used to perform taxonomic analysis (phylum, class, order, family, genus, species) and community diversity analysis (Sobs index, Shannon index, Shannoneven index, Coverage index, PD index, and principal co-ordinates analysis) on representative sequences and abundance of amplicon sequence variants (ASV). Wilcoxon rank sum test, P-value multiple test correction, and analysis of similarities were used to test differences between the two groups to obtain information on the distribution characteristics and species differences of intestinal microbiota in children. Results Seventy-four fecal samples were sequenced, and the sequencing results were subjected to quality control and filtering. A total of 4905306 optimized sequences were obtained, resulting in 1860 ASVs. The diversity data analysis of ASVs generated 889 species annotation results at 8 taxonomic levels. The alpha diversity analysis showed that the richness (Sobs index), diversity (Shannon index), evenness (Shannoneven index), and phylogenetic diversity (PD index) of fecal community of the obese/overweight children were increased compared to those of the normal weight children, but there were no statistical differences between the two groups (P>0.05). The beta diversity analysis showed that there was little difference in the composition of microbial species between the two groups, and no significant clustering separation was observed. The results of species composition analysis at phylum, order, family, and genus levels of 74 samples showed a consistent core microbiota structure in the two groups of gut microbiota, but there were differences in microbiota composition. The differences in microbial community composition between the two groups were manifested at the taxonomic levels of order, family, and genus, among which phylum Firmicutes, order Erysipelotrichales, family Erysipelatocyclostridiaceae, genus Erysipelotrichaceae_ UCG-003 and genus Catenibacterium were significantly enriched in the obese/overweight group and contributed significantly to the phenotypic difference of obese/overweight [linear discriminant analysis (LDA)=3.72, P<0.01; LDA=3.29, P<0.05). Phylum Proteobacteria, order Enterobacterales, family Enterobacteriaceae, genus unclassified was significantly enriched in the normal weight group and contributed significantly to the phenotypic difference of normal body weight (LDA=3.93, P<0.05). Conclusion The richness and diversity of gut microbiota in obese/overweight children aged 2-6 years in Shanghai are increased, but there is no difference compared to normal weight children. There is a difference in the composition of gut microbiota between the obese/overweight group and the normal weight group.
10.Oral Absorption and Labeling Techniques of Traditional Chinese Medicine Polysaccharides: A Review
Weifeng ZHU ; Shuangyan DENG ; Hui OUYANG ; Wenjing YANG ; Jianing FU ; Huangqing WEI ; Qiong LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):261-269
Polysaccharides are the important material basis of traditional Chinese medicine(TCM), and have various pharmacological activities such as immunomodulation, antitumor and anti-aging. Due to the large molecular weight of TCM polysaccharides, their structural analysis and oral absorption mechanism are facing technical challenges, and the current research on their structure-activity relationships has made some breakthroughs, while the research on their oral absorption mechanisms is relatively slow. In-depth study of the oral absorption mechanism of TCM polysaccharides is not only crucial for the interpretation of their action pathways and efficacy in vivo, but also helpful for the interpretation of their pharmacological effects, rational clinical applications and the discovery of new targets. In recent years, the application of fluorescent labeling and isotopic labeling methods has provided new technical means for the oral absorption studies of polysaccharides, which has promoted the development of oral absorption studies of TCM polysaccharides. In this paper, we reviewed the oral absorption pathways and labeling techniques of TCM polysaccharides, and concluded that they can be absorbed orally through transmembrane, cellular bypass, and M-cell-mediated transport, of which transmembrane pathway is the main absorption pathway, and summarized the labeling reactions of four fluorescent labeling and isotopic labeling methods with TCM polysaccharides, which can provide references for evaluating the absorption pathways of TCM polysaccharides, screening active TCM polysaccharides, establishing pharmacodynamic models and comprehensively elucidating the mechanism of TCM polysaccharides.

Result Analysis
Print
Save
E-mail