1.Effect of Erchen Decoction (二陈汤) on Serum Leptin and Expression of LepR,POMC,and NPY in Hypothalamus of Metabolic Syndrome Model Mice with Phlegm Syndrome
Menghan YANG ; Yuanyuan LI ; Xiujuan ZHENG ; Wenhui XIONG ; Xirui HUANG ; Bizhen GAO
Journal of Traditional Chinese Medicine 2025;66(9):948-954
ObjectiveTo explore the potential mechanism of Erchen Decoction (二陈汤, ECD) in improving metabolic syndrome (MS) with phlegm syndrome. MethodsForty mice were randomly divided into a blank group of 10 mice and a modeling group of 30 mice. The MS model with phlegm syndrome was induced in the modeling group by high-fat diet. Thirty successfully modeled mice were randomly divided into a model group, a ECD group, and a metformin group, with 10 mice in each group. The ECD group was given 0.4 g/(kg·d) of ECD, while the metformin group was intervened with 11.1 g/(kg·d) of metformin solution, and the blank group and the model group were given 0.02 ml/(g·d) of sterilized drinking water, all by gavage, once daily for 4 weeks. Body weight, abdominal circumfe-rence, body length, Lee's index and food intake were recorded. Blood glucose and blood lipid levels including fasting blood glucose, triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured. ELISA was used to detect serum leptin levels, while HE staining was used to observe liver pathological changes. Western Blot and q-PCR were used to detect protein and mRNA expression of hypothalamic leptin receptor (LepR), pro melanocortin (POMC), and neuropeptide Y (NPY) in the hypothalamus. Immunofluorescence was used to detect fluorescence expression of POMC and NPY in the hypothalamic arcuate nucleus region. ResultsPathological results showed that the mice in the model group had numerous fat vacuoles in hepatocytes and significant liver fat deposition, while the ECD and metformin groups showed reduced fat vacuoles and less liver fat deposition. Compared to those in the blank group, the mice in the model group mice showed liver fat deposition, increased body weight, abdominal circumference, Lee's index and food intake; fasting blood glucose, TG, TC, LDL-C, and serum leptin levels were elevated, while HDL-C was decreased; the expression of LepR, POMC protein levels and their mRNA expression decreased, while the protein level and mRNA expression of NPY increased; the fluorescence expression of POMC in the arcuate nucleus was reduced, while NPY fluorescence expression increased (P<0.05 or P<0.01). Compared to the model group, the ECD group and metformin group showed significant improvements in the above indicators (P<0.05 or P<0.01). Compared to the ECD group, the metformin group showed a reduction in body weight and NPY fluorescence expression, and an increase in HDL-C levels (P<0.05 or P<0.01). ConclusionECD can downregulate serum leptin levels and improve glucose and lipid metabolism in the MS of phlegm syndrome. Its mechanism of action may be to reduce liver fat deposition and thereafter affect the expression of neuropeptides related to feeding activity in the hypothalamus.
2.Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging.
Wei LIU ; Le ZHANG ; Wenhui LIAO ; Huiguo LIU ; Wukaiyang LIANG ; Jinhua YAN ; Yi HUANG ; Tao JIANG ; Qian WANG ; Cuntai ZHANG
Chinese Medical Journal 2025;138(2):155-171
Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Humans
;
Sleep Apnea, Obstructive/pathology*
;
Aging/physiology*
;
Oxidative Stress/physiology*
;
Animals
3.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
4.Correction to: Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):547-548
5.Investigation on Preventive Effect of Total Saponins of Notoginseng Radix et Rhizoma on Aspirin-induced Small Intestine Injury Based on Serum Metabolomics
Wenhui LIU ; Guodong HUA ; Baochen ZHU ; Ruoyu GAO ; Xin HUANG ; Meng WANG ; Zheng LIU ; Jiaojiao CHENG ; Zhibin SONG ; Jingui WANG ; Chunmiao XUE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(22):196-203
ObjectiveMetabolomics was utilized to investigate the preventive effect of notoginseng total saponins(NTS) on aspirin(acetyl salicylic acid, ASA)-induced small bowel injury in rats. MethodFifty male SD rats were randomly divided into normal and model groups, NTS high-dose and low-dose groups(62.5, 31.25 mg·kg-1), and positive drug group(omeprazole 2.08 mg·kg-1+rebamipide 31.25 mg·kg-1), with 10 rats in each group. Except for the normal group, rats in other groups were given ASA enteric-coated pellets 10.41 mg·kg-1 daily to establish a small intestine injury model. On this basis, each medication group was gavaged daily with the corresponding dose of drug, and the normal group and the model group were gavaged with an equal amount of drinking water. Changes in body mass and fecal characteristics of rats were recorded and scored during the period. After 14 weeks of administration, small intestinal tissues of each group were taken for hematoxylin-eosin(HE) staining, scanning electron microscopy to observe the damage, and the apparent damage of small intestine was scored. Serum from rats in the normal group, the model group, and the NTS high-dose group was taken and analyzed for metabolomics by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the data were processed by multivariate statistical analysis, the potential biomarkers were screened by variable importance in the projection(VIP) value≥1.0, fold change(FC)≥1.5 or ≤0.6 and t-test P<0.05, and pathway enrichment analysis of differential metabolites was performed in conjunction with Human Metabolome Database(HMDB) and Kyoto Encyclopedia of Genes and Genomes(KEGG). ResultAfter 14 weeks of administration, the average body mass gain of the model group was lower than that of the normal group, and the NTS high-dose group was close to that of the normal group. Compared with the normal group, the fecal character score of rats in the model group was significantly increased(P<0.05), and compared with the model group, the scores of the positive drug group and the NTS high-dose group were reduced, but the difference was not statistically significant. HE staining and scanning electron microscopy results showed that NTS could significantly improve ASA-induced small intestinal injury, compared with the normal group, the small bowel injury score of the model group was significantly increased(P<0.01), compared with the model group, the small bowel injury scores of the NTS low and high dose groups were significantly reduced(P<0.05, P<0.01). Serum metabolomics screened a total of 75 differential metabolites between the normal group and the model group, of which 55 were up-regulated and 20 were down-regulated, 76 differential metabolites between the model group and the NTS groups, of which 14 were up-regulated and 62 were down-regulated. NTS could modulate three differential metabolites(salicylic acid, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid), which were involved in 3 metabolic pathways, namely, the bile secretion, the biosynthesis of folic acid, and the biosynthesis of phenylalanine, tyrosine and tryptophan. ConclusionNTS can prevent ASA-induced small bowel injury, and the underlying mechanism may be related to the regulation of bile secretion and amino acid metabolic pathways in rats.
6.Experimental Study on Regulation of Nrf2/HO-1 by Linalool to Inhibit Hepatic Injury Induced by Aflatoxin B1
Meng WANG ; Chunmiao XUE ; Xin HUANG ; Wenhui LIU ; Ruoyu GAO ; Xuehui BAI ; Guodong HUA ; Baochen ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):89-96
ObjectiveTo investigate the effect of linalool against acute liver injury induced by aflatoxin B1(AFB1) in rats and explore its protective mechanism. MethodTwenty male SPF SD rats were randomly divided into three groups: Control (n=6), AFB1 (n=7), and linalool (n=7) groups. Linalool solution (200 mg·kg-1) was administered preventatively for 14 days, while the control and AFB1 groups intragastrically received an equivalent volume of double distilled water. After preventative administration of linalool, AFB1 solution (1 mg·kg-1, dissolved in saline) was intraperitoneally injected for two consecutive days to induce acute liver injury in rats. Samples were collected and processed 14 days after model establishment. Pathological changes in liver tissue of rats were observed using Hematoxylin-eosin(HE) staining and Masson staining. Biochemical detection was performed to measure the levels of alanine transaminase(ALT), aspartate transaminase(AST), γ-glutamyl transferase(GGT), lactate dehydrogenase(LDH), alkaline phosphatase(ALP), total bilirubin(TBil), direct bilirubin(DBil), indirect bilirubin(IBil), malondialdehyde(MDA), superoxidedismutase(SOD), catalase(CAT) , glutathione(GSH), Fe3+, and Fe2+ in the liver tissue. Western blot was adopted to assess protein expression levels of nuclear factor-erythroid 2-related factor 2(Nrf2) and heme oxygenase-1(HO-1). Molecular docking was performed to verify the binding between linalool and key proteins of the Nrf2/HO-1 signaling pathway. Molecular dynamics techniques were used to confirm the stability and affinity of linalool binding with key proteins of the Nrf2/HO-1 signaling pathway. ResultPathological results showed that compared to that in the AFB1 group, the liver structure in the linalool group tended to be normal, with a significant decrease in blue collagen fibers. The linalool group exhibited significantly reduced levels of ALT, AST, GGT, LDH, ALP, TBil, DBil, and IBil (P<0.01), Fe3+ and Fe2+ content, and oxidative stress marker MDA (P<0.01). The levels of antioxidants SOD, CAT, and GSH significantly increased (P<0.01). Molecular docking showed a molecular docking energy between linalool and Nrf2 and HO-1 targets of -5.495 6 and -5.199 4 kcal·mol-1(1 cal≈4.186 J), respectively. Molecular dynamics results indicated strong affinity in the binding of linalool with Nrf2 and HO-1. Western blot revealed a significant increase in Nrf2 protein expression (P<0.05) and a decrease in HO-1 protein expression (P<0.01) in the linalool group. ConclusionLinalool may protect against AFB1-induced acute liver injury by modulating the Nrf2/HO-1 ferroptosis signaling pathway to inhibit liver cell ferroptosis and regulate hepatic oxidative stress levels.
7.A national questionnaire survey on endoscopic treatment for gastroesophageal varices in portal hypertension in China
Xing WANG ; Bing HU ; Yiling LI ; Zhijie FENG ; Yanjing GAO ; Zhining FAN ; Feng JI ; Bingrong LIU ; Jinhai WANG ; Wenhui ZHANG ; Tong DANG ; Hong XU ; Derun KONG ; Lili YUAN ; Liangbi XU ; Shengjuan HU ; Liangzhi WEN ; Ping YAO ; Yunxiao LIANG ; Xiaodong ZHOU ; Huiling XIANG ; Xiaowei LIU ; Xiaoquan HUANG ; Yinglei MIAO ; Xiaoliang ZHU ; De'an TIAN ; Feihu BAI ; Jitao SONG ; Ligang CHEN ; Yingcai MA ; Yifei HUANG ; Bin WU ; Xiaolong QI
Chinese Journal of Digestive Endoscopy 2024;41(1):43-51
Objective:To investigate the current status of endoscopic treatment for gastroesophageal varices in portal hypertension in China, and to provide supporting data and reference for the development of endoscopic treatment.Methods:In this study, initiated by the Liver Health Consortium in China (CHESS), a questionnaire was designed and distributed online to investigate the basic condition of endoscopic treatment for gastroesophageal varices in portal hypertension in 2022 in China. Questions included annual number and indication of endoscopic procedures, adherence to guideline for preventing esophagogastric variceal bleeding (EGVB), management and timing of emergent EGVB, management of gastric and isolated varices, and improvement of endoscopic treatment. Proportions of hospitals concerning therapeutic choices to all participant hospitals were calculated. Guideline adherence between secondary and tertiary hospitals were compared by using Chi-square test.Results:A total of 836 hospitals from 31 provinces (anotomous regions and municipalities) participated in the survey. According to the survey, the control of acute EGVB (49.3%, 412/836) and the prevention of recurrent bleeding (38.3%, 320/836) were major indications of endoscopic treatment. For primary [non-selective β-blocker (NSBB) or endoscopic therapies] and secondary prophylaxis (NSBB and endoscopic therapies) of EGVB, adherence to domestic guideline was 72.5% (606/836) and 39.2% (328/836), respectively. There were significant differences in the adherence between secondary and tertiary hospitals in primary prophylaxis of EGVB [71.0% (495/697) VS 79.9% (111/139), χ2=4.11, P=0.033] and secondary prophylaxis of EGVB [41.6% (290/697) VS 27.3% (38/139), χ2=9.31, P=0.002]. A total of 78.2% (654/836) hospitals preferred endoscopic therapies treating acute EGVB, and endoscopic therapy was more likely to be the first choice for treating acute EGVB in tertiary hospitals (82.6%, 576/697) than secondary hospitals [56.1% (78/139), χ2=46.33, P<0.001]. The optimal timing was usually within 12 hours (48.5%, 317/654) and 12-24 hours (36.9%, 241/654) after the bleeding. Regarding the management of gastroesophageal varices type 2 and isolated gastric varices type 1, most hospitals used cyanoacrylate injection in combination with sclerotherapy [48.2% (403/836) and 29.9% (250/836), respectively], but substantial proportions of hospitals preferred clip-assisted therapies [12.4% (104/836) and 26.4% (221/836), respectively]. Improving the skills of endoscopic doctors (84.2%, 704/836), and enhancing the precision of pre-procedure evaluation and quality of multidisciplinary team (78.9%, 660/836) were considered urgent needs in the development of endoscopic treatment. Conclusion:A variety of endoscopic treatments for gastroesophageal varices in portal hypertension are implemented nationwide. Participant hospitals are active to perform emergent endoscopy for acute EGVB, but are inadequate in following recommendations regarding primary and secondary prophylaxis of EGVB. Moreover, the selection of endoscopic procedures for gastric varices differs greatly among hospitals.
8.Identification of banana ADA1 gene family members and their expression profiles under biotic and abiotic stresses.
Qiqi ZHAO ; Wenhui REN ; Huifei ZHU ; Qiuzhen WU ; Chunyu ZHANG ; Xiaoqiong XU ; Binbin LUO ; Yuji HUANG ; Yukun CHEN ; Yuling LIN ; Zhongxiong LAI
Chinese Journal of Biotechnology 2024;40(1):190-210
The Spt-Ada-Gcn5-acetyltransferase (SAGA) is an ancillary transcription initiation complex which is highly conserved. The ADA1 (alteration/deficiency in activation 1, also called histone H2A functional interactor 1, HFI1) is a subunit in the core module of the SAGA protein complex. ADA1 plays an important role in plant growth and development as well as stress resistance. In this paper, we performed genome-wide identification of banana ADA1 gene family members based on banana genomic data, and analyzed the basic physicochemical properties, evolutionary relationships, selection pressure, promoter cis-acting elements, and its expression profiles under biotic and abiotic stresses. The results showed that there were 10, 6, and 7 family members in Musa acuminata, Musa balbisiana and Musa itinerans. The members were all unstable and hydrophilic proteins, and only contained the conservative SAGA-Tad1 domain. Both MaADA1 and MbADA1 have interactive relationship with Sgf11 (SAGA-associated factor 11) of core module in SAGA. Phylogenetic analysis revealed that banana ADA1 gene family members could be divided into 3 classes. The evolution of ADA1 gene family members was mostly influenced by purifying selection. There were large differences among the gene structure of banana ADA1 gene family members. ADA1 gene family members contained plenty of hormonal elements. MaADA1-1 may play a prominent role in the resistance of banana to cold stress, while MaADA1 may respond to the Panama disease of banana. In conclusion, this study suggested ADA1 gene family members are highly conserved in banana, and may respond to biotic and abiotic stress.
Musa/genetics*
;
Phylogeny
;
Fungal Proteins
;
Cell Nucleus
;
Histones
;
Stress, Physiological/genetics*
9.Molecular mechanism of naringin in prevention and treatment of osteoporosis
Wenchi WANG ; Ruiqi WU ; Jierong HUANG ; Lifeng ZHU ; Xianqin CUI ; Dongzong LI ; Wenhui CHEN ; Chunting LIN ; Wei CUI
Chinese Journal of Tissue Engineering Research 2024;28(34):5528-5535
BACKGROUND:Recent studies have shown that research on naringin anti-osteoporosis mostly stays in in vitro and in vivo experiments.Understanding the mechanism of related signaling pathways and the expression of related proteins and some specific genes is an important way to deeply understand naringin anti-osteoporosis.At present,traditional Chinese medicine has been confirmed to have a significant role in anti-osteoporosis.Naringin is one of the main active ingredients in Rhizoma Drynariae.Its effectiveness and mechanism of action against osteoporosis have been gradually recognized by scholars,and its clinical and basic research has been gradually emphasized. OBJECTIVE:To analyze and summarize the research progress of naringin in anti-osteoporosis in vitro and in vivo,thereby providing some ideas for the next step to study its related mechanism of action. METHODS:The relevant literatures included in CNKI and PubMed database were searched with the Chinese search terms of"naringin,osteoporosis,traditional Chinese medicine compound,pathogenesis,signaling pathway,bone marrow mesenchymal stem cells,osteoblasts,osteoclasts"in Chinese and English,respectively.The corresponding criteria were established according to the research needs,and finally 69 articles were included for review. RESULTS AND CONCLUSION:Naringin blocks the increase in the number of osteoclasts and adipocytes,the decrease in the number of osteocytes and osteocalcin(+)cells induced by fructose-rich diet,and promotes the secretion of Sema3A from osteoblasts and osteocytes,thereby enhancing local bone formation and inhibiting osteoclast production by activating the Wnt/β-catenin pathway.Naringin is an important way to induce autophagy of osteoblasts,but autophagy-related proteins participate in osteoblast differentiation and bone formation.Lack of autophagy in osteoblasts reduces mineralization and leads to an imbalance in the number of osteoblasts and osteoclasts,which results in bone loss and decreased bone density.The composite scaffold loaded with naringin can be used as a necessary carrier for bone defect repair and has excellent bone repair properties.Naringin can also accelerate the growth of new bone tissue by increasing the local contents of bone morphogenetic protein 2 and vascular endothelial growth factor.Naringin can regulate bone metabolism and inhibit oxidative stress via ERK,PI3K/Akt and Wnt signaling pathways to improve osteoporosis,which can play a good role in preventing and controlling the disease.However,the depth and breadth of the relevant research is insufficient.Based on the mechanism of the current study,we should investigate the specific mechanisms by which naringin regulates different pathways and inter-pathway interactions in the future,which will be beneficial to the multifaceted development of naringin used in the treatment of osteoporosis..
10.Correlation analysis of serum lipids, HbA1C levels and insulin resistance in obese type 2 diabetes patients
Meiling LAO ; Aisheng WEI ; Wangmu GESANG ; Zhongliang HUANG ; Fen HE ; Wenhui WANG ; Shengmin DENG ; Dongshan YANG ; Cangjue AWANG
Journal of Public Health and Preventive Medicine 2024;35(1):136-140
Objective To investigate the changes of blood lipid and glycosylated hemoglobin (HbA1c) levels in obese type 2 diabetes (T2DM) patients and their relationship with insulin resistance (Homa-IR). Methods A total of 120 cases of T2DM newly diagnosed in Motuo County, Tibet from February to October 2022 were selected as the observation group. According to BMI, the patients were divided into diabetes normal weight group (46 cases), overweight group (43 cases) and obesity group (31 cases); 145 healthy subjects were selected as the control group. The levels of HbA1c, fasting blood glucose (FPG), fasting insulin (FINS), serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C) were detected in the study subjects, and Homa-IR and Homa-β indices were calculated. The height, weight, and abdominal circumference were measured. The differences in the levels of the above indicators between the observation group patients and the control group, as well as among various subgroups within the observation group were compared. The influencing factors of Homa-IR in obese T2DM patients were analyzed. Results Compared with the control group, a significant increase in BMI, abdominal circumference, blood pressure, HbA1c, FBG, FINS, TC, TG, LDL-C, UA, visceral fat area, and the levels of Home-IR and Home-β was found in the observation group (all P<0.05). There were significant differences in BMI, abdominal circumference, and the levels of FINS, Homa IR, Homa-β, and HbA1c in diabetes patients with different BMI (all P<0.05). Correlation analysis showed that TG levels in obese T2DM patients in the observation group were significantly correlated with HbA1c (r=0.396, P=0.027), Homa-IR (r=0.405, P=0.024), and Home-β (r=-0.401, P=0.025); LDL-C was significantly correlated with Homa-IR (r=0.411, P=0.022) and Homa-β (r=-0.412, P=0.021); HbA1c was significantly positively correlated with BMI (r=0.371, P=0.040). Conclusion Insulin resistance is closely related to TG, LDL-C, and BMI in obese T2DM patients from the Motuo ethnic minority of Tibet, suggesting that these factors may play a role in the occurrence of T2DM.


Result Analysis
Print
Save
E-mail