1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Expression and Clinical Significance of PLCβ4 Gene in Hepatocellular Carcinoma Analyzed Based on TCGA Database and Experimental Validation
Limei WEN ; Yali GUO ; Qiang HOU ; Dongxuan ZHENG ; Wu DAI ; Xiang GAO ; Jianhua YANG ; Junping HU
Cancer Research on Prevention and Treatment 2025;52(6):502-510
Objective To analyze the PLCβ4 gene mRNA expression and its clinical significance in hepatocellular carcinoma (HCC) based on TCGA database. Methods Based on the data on 424 clinical samples (including 374 cases of HCC tissues and 50 cases of nontumor liver tissues) in the TCGA database, Kaplan–Meier method, Cox regression analysis, and immune infiltration analysis were performed to evaluate the relationship between PLCβ4 gene and the clinical characteristics and survival prognosis of HCC patients. Correlation analysis between PLCβ4 gene and 24 types of immune cells was applied to investigate the relationship between PLCβ4 gene and immune cell infiltration and mRNA expression level of TP53 gene, a high-frequency mutation gene in HCC. In addition, paraffin sections of highly, moderately, and poorly differentiated tumor tissues and normal liver tissues from HCC patients were collected. The histopathological observation was carried out via HE staining method, and the expression levels of PLCβ4 and Ki-67 proteins in each clinical sample were verified through the immunohistochemical method. Results The expression level of PLCβ4 gene in HCC was significantly higher than that in normal tissues (P<0.01), and all patients in the PLCβ4 high-expression group had a significantly longer overall survival than those in the low-expression group (P<0.05), which suggested that PLCβ4 substantially affected the prognosis of HCC patients. Correlation analysis showed that the expression level of PLCβ4 gene was highly correlated with immune cell infiltration and the expression level of TP53 gene. As verified by clinical sample experiments, HE staining experiments and immunohistochemical results revealed that PLCβ4 gene expression in HCC tissue samples was significantly higher than that in normal tissues (P<0.001), and it was negatively correlated with the degree of differentiation. Conclusion PLCβ4 may serve as an independent prognostic factor in HCC and is expected to be a novel molecular target for HCC treatment.
8.Safety of high-carbohydrate fluid diet 2 h versus overnight fasting before non-emergency endoscopic retrograde cholangiopancreatography: A single-blind, multicenter, randomized controlled trial
Wenbo MENG ; W. Joseph LEUNG ; Zhenyu WANG ; Qiyong LI ; Leida ZHANG ; Kai ZHANG ; Xuefeng WANG ; Meng WANG ; Qi WANG ; Yingmei SHAO ; Jijun ZHANG ; Ping YUE ; Lei ZHANG ; Kexiang ZHU ; Xiaoliang ZHU ; Hui ZHANG ; Senlin HOU ; Kailin CAI ; Hao SUN ; Ping XUE ; Wei LIU ; Haiping WANG ; Li ZHANG ; Songming DING ; Zhiqing YANG ; Ming ZHANG ; Hao WENG ; Qingyuan WU ; Bendong CHEN ; Tiemin JIANG ; Yingkai WANG ; Lichao ZHANG ; Ke WU ; Xue YANG ; Zilong WEN ; Chun LIU ; Long MIAO ; Zhengfeng WANG ; Jiajia LI ; Xiaowen YAN ; Fangzhao WANG ; Lingen ZHANG ; Mingzhen BAI ; Ningning MI ; Xianzhuo ZHANG ; Wence ZHOU ; Jinqiu YUAN ; Azumi SUZUKI ; Kiyohito TANAKA ; Jiankang LIU ; Ula NUR ; Elisabete WEIDERPASS ; Xun LI
Chinese Medical Journal 2024;137(12):1437-1446
Background::Although overnight fasting is recommended prior to endoscopic retrograde cholangiopancreatography (ERCP), the benefits and safety of high-carbohydrate fluid diet (CFD) intake 2 h before ERCP remain unclear. This study aimed to analyze whether high-CFD intake 2 h before ERCP can be safe and accelerate patients’ recovery.Methods::This prospective, multicenter, randomized controlled trial involved 15 tertiary ERCP centers. A total of 1330 patients were randomized into CFD group ( n = 665) and fasting group ( n = 665). The CFD group received 400 mL of maltodextrin orally 2 h before ERCP, while the control group abstained from food/water overnight (>6 h) before ERCP. All ERCP procedures were performed using deep sedation with intravenous propofol. The investigators were blinded but not the patients. The primary outcomes included postoperative fatigue and abdominal pain score, and the secondary outcomes included complications and changes in metabolic indicators. The outcomes were analyzed according to a modified intention-to-treat principle. Results::The post-ERCP fatigue scores were significantly lower at 4 h (4.1 ± 2.6 vs. 4.8 ± 2.8, t = 4.23, P <0.001) and 20 h (2.4 ± 2.1 vs. 3.4 ± 2.4, t= 7.94, P <0.001) in the CFD group, with least-squares mean differences of 0.48 (95% confidence interval [CI]: 0.26–0.71, P <0.001) and 0.76 (95% CI: 0.57–0.95, P <0.001), respectively. The 4-h pain scores (2.1 ± 1.7 vs. 2.2 ± 1.7, t = 2.60, P = 0.009, with a least-squares mean difference of 0.21 [95% CI: 0.05–0.37]) and positive urine ketone levels (7.7% [39/509] vs. 15.4% [82/533], χ2 = 15.13, P <0.001) were lower in the CFD group. The CFD group had significantly less cholangitis (2.1% [13/634] vs. 4.0% [26/658], χ2 = 3.99, P = 0.046) but not pancreatitis (5.5% [35/634] vs. 6.5% [43/658], χ2 = 0.59, P = 0.444). Subgroup analysis revealed that CFD reduced the incidence of complications in patients with native papilla (odds ratio [OR]: 0.61, 95% CI: 0.39–0.95, P = 0.028) in the multivariable models. Conclusion::Ingesting 400 mL of CFD 2 h before ERCP is safe, with a reduction in post-ERCP fatigue, abdominal pain, and cholangitis during recovery.Trail Registration::ClinicalTrials.gov, No. NCT03075280.
9.Endovascular treatment for symptomatic non-acute long-segment occlusion of the internal carotid artery: comparison with drug therapy
Yue ZHU ; Chao HOU ; Shuxian HUO ; Qin YIN ; Xianjun HUANG ; Wen SUN ; Guodong XIAO ; Yong YANG ; Hongbing CHEN ; Min LI ; Mingyang DU ; Ruidong YE
International Journal of Cerebrovascular Diseases 2024;32(8):576-584
Objective:To investigate the clinical outcome of endovascular treatment vs. drug treatment in patients with symptomatic non-acute long-segment occlusion of the internal carotid artery. Methods:Based on prospective cohort registration research data, patients with symptomatic non-acute long-segment occlusion of internal carotid artery were retrospectively included. They were divided into a drug treatment group and an endovascular treatment group according to the actual treatment received. The latter was further divided into a successful recanalization group and an unsuccessful recanalization group. The endpoint events included ipsilateral ischemic stroke, any stroke, and all-cause death. Multivariate logistic regression analysis was used to compare the endpoint events between groups during the perioprocedural period (within 30 days), and multivariate Cox proportional hazards model was use to compare the endpoint events between the groups during the long-term follow-up. Results:A total of 684 patients were included, of which 570 (83.33%) were male, median aged 63 years (interquartile range, 56-70 years). Three hundred and fifty-three patients (51.6%) received drug treatment; 331 (48.4%) received endovascular treatment, of which 161 (48.6%) had successful recanalization. The median follow-up time was 1 223 days (interquartile range, 646.5-2 082 days), with 109 patients (15.9%) experiencing stroke recurrence events (including 87 ipsilateral ischemic stroke) and 78 (11.4%) experiencing all-cause mortality. The risk of any stroke during the perioprocedural period in the successful recanalization group was significantly higher than that in the drug treatment group (odds ratio 3.679, 95% confidence interval 1.038-13.036; P=0.044), but the risk of ipsilateral ischemic stroke recurrence (risk ratio 0.347, 95% confidence interval 0.152-0.791; P=0.012) and all-cause mortality (risk ratio 0.239, 95% confidence interval 0.093-0.618; P=0.003) during the long-term follow-up were significantly lower than those in the drug treatment group. Conclusions:In patients with symptomatic non-acute long-segment occlusion of the internal carotid artery, endovascular treatment can increase the risk of stroke recurrence within 30 days, but successful recanalization can reduce the risks of long-term ipsilateral ischemic stroke recurrence and all-cause mortality.
10.Anatomic study of pedicled buccal fat pad for temporomandibular joint ankylosis
Zhao-Rong ZONG ; Zi-Xuan MENG ; Jia-Xin QIU ; Yi-Wen LI ; Hou-Wen CHENG ; Ai-She DUN
Journal of Regional Anatomy and Operative Surgery 2024;33(6):467-471
Objective To investigate the feasibility of translocation of pedicled buccal fat pad in the treatment of the temporomandibular joint ankylosis(TMJA)by measuring the diameter of buccal fat pad and related anatomical structures of the transverse blood vessels,nerves and temporomandibular joint.Methods A total of 40 adult head and neck specimens were randomly divided into group A and group B,with 20 cases in each group.The morphology of the buccal fat pad in group A was observed,and its size and compression diameter through blood vessels and nerves were measured.The anatomical structures of the temporomandibular joint in group B were observed and measured.Results The volume of buccal fat pad in group A was(10.10±1.10)mL on the left side and(9.70±1.50)mL on the right side.The longitudinal axis length of buccal fat pad was(28.18±1.35)mm on the left side and(29.47±1.12)mm on the right side;Transverse axis length of buccal fat pad was(18.56±1.67)mm on the left side and(18.97±1.73)mm on the right side;There are facial artery,facial vein,maxillary artery branch,facial nerve buccal branch and so on through the buccal fat pad.In group B,the sagittal section of the temporomandibular joint disc presented S-type in 15 cases(75.0%),L-type in 3 cases(15.0%),and transitional type in 2 cases(10.0%).Anterior and posterior diameter of the articular disc was(14.42±1.94)mm on the left side and(15.34±1.37)mm on the right side;inside and outside diameter of the articular disc was(20.18±1.77)mm on the left side and(19.57±1.32)mm on the right side.Branches of maxillary artery and superficial temporal artery were respectively distributed within and outside the joint.Conclusion The pedicled buccal fat pad has a constant anatomical position,abundant blood supply,strong tissue repair,anti-infection ability and"buffer pad"function,which can reduce the formation of scar after surgery for TMJA,reduce the postoperative recurrence rate,and contribute to the recovery of joint function after surgery.

Result Analysis
Print
Save
E-mail