1.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
3.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
4.Cuscutae Semen-Lycii Fructus Improves Spermatogenesis in Rat Model of Oligoasthenozoospermia by Inhibiting Oxidative Stress-induced Blood-testis Barrier Damage via Regulating SIRT1/Nrf2 Signaling Pathway
Wen DUAN ; Xiaojing ZHANG ; Wenjie DING ; Jianning JIN ; Guoqing CHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):29-38
ObjectiveTo investigate the effect of the herb pair Cuscutae Semen-Lycii Fructus on oxidative stress-induced blood-testis barrier dysfunction and spermatogenesis in the rat model of oligoasthenozoospermia (OAS) and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. MethodsThirty-five male SD rats were randomized into a blank group (n=7) and a modeling group (n=28). The OAS model was established by gavage of hydrocortisone aqueous solution combined with single factor electrical stimulation. The modeled rats were randomly assigned into the following groups: model, Cuscutae Semen-Lycii Fructus granules (3.2 g·kg-1), Cuscutae Semen-Lycii Fructus total flavonoids (0.34 g·kg-1), and L-carnitine (0.38 g·kg-1), and treated for 4 weeks. The sperm quality of rats was assessed by an automatic sperm analyzer. The levels of superoxide dismutase (SOD), malondialdehyde (MAD), and glutathione peroxidase (GSH-Px) in the testicular tissue were determined by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was employed to reveal the pathological changes in the testicular tissue and score the spermatogenic function. Transmission electron microscopy was employed to observe the ultrastructural changes of Sertoli cells. Western blot and Real-time PCR were employed to determine the protein and mRNA levels, respectively, of SIRT1, Nrf2, Occludin, zonula occludens-1 (ZO-1), connexin 43 (CX43), and β-catenin. ResultsCompared with the blank group, the model group showed decreased total sperm count and motility (P<0.05, P<0.01), obvious damage in the testicular tissue and blood-testis barrier structure, reduced score of spermatogenic function (P<0.01), declined levels of GSH-Px and SOD in the testicular tissue (P<0.05), elevated level of MDA, and down-regulated protein levels of SIRT1, Nrf2, ZO-1, CX43, β-catenin, and occludin (P<0.05, P<0.01) and mRNA levels of SIRT1, Nrf2, ZO-1, CX43, and β-catenin in the testicular tissue (P<0.05, P<0.01). After treatment, the testicular tissue, blood-testis barrier structure, and score of spermatogenic function (P<0.01) were improved in the Cuscutae Semen-Lycii Fructus granules group, Cuscutae Semen-Lycii Fructus total flavonoids group, and L-carnitine group. Compared with the model group, the treatment groups presented lowered levels of GSH-Px and SOD (P<0.05, P<0.01), and the Cuscutae Semen-Lycii Fructus granule group showed a decline in MDA level. The protein and mRNA levels of SIRT1, Nrf2, ZO-1, CX43, β-catenin, and occludin were up-regulated in the Cuscutae Semen-Lycii Fructus granules group and total flavonoids group (P<0.05, P<0.01). ConclusionThe herb pair Cuscutae Semen-Lycii Fructus can regulate the SIRT1/Nrf2 pathway to inhibit oxidative stress and alleviate the blood-testis barrier damage, thereby improving the spermatogenic function in the rat model of OAS. Total flavonoids may be the material basis for the therapeutic effect of Cuscutae Semen-Lycii Fructus.
5.Cuscutae Semen-Lycii Fructus Improves Spermatogenesis in Rat Model of Oligoasthenozoospermia by Inhibiting Oxidative Stress-induced Blood-testis Barrier Damage via Regulating SIRT1/Nrf2 Signaling Pathway
Wen DUAN ; Xiaojing ZHANG ; Wenjie DING ; Jianning JIN ; Guoqing CHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):29-38
ObjectiveTo investigate the effect of the herb pair Cuscutae Semen-Lycii Fructus on oxidative stress-induced blood-testis barrier dysfunction and spermatogenesis in the rat model of oligoasthenozoospermia (OAS) and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. MethodsThirty-five male SD rats were randomized into a blank group (n=7) and a modeling group (n=28). The OAS model was established by gavage of hydrocortisone aqueous solution combined with single factor electrical stimulation. The modeled rats were randomly assigned into the following groups: model, Cuscutae Semen-Lycii Fructus granules (3.2 g·kg-1), Cuscutae Semen-Lycii Fructus total flavonoids (0.34 g·kg-1), and L-carnitine (0.38 g·kg-1), and treated for 4 weeks. The sperm quality of rats was assessed by an automatic sperm analyzer. The levels of superoxide dismutase (SOD), malondialdehyde (MAD), and glutathione peroxidase (GSH-Px) in the testicular tissue were determined by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was employed to reveal the pathological changes in the testicular tissue and score the spermatogenic function. Transmission electron microscopy was employed to observe the ultrastructural changes of Sertoli cells. Western blot and Real-time PCR were employed to determine the protein and mRNA levels, respectively, of SIRT1, Nrf2, Occludin, zonula occludens-1 (ZO-1), connexin 43 (CX43), and β-catenin. ResultsCompared with the blank group, the model group showed decreased total sperm count and motility (P<0.05, P<0.01), obvious damage in the testicular tissue and blood-testis barrier structure, reduced score of spermatogenic function (P<0.01), declined levels of GSH-Px and SOD in the testicular tissue (P<0.05), elevated level of MDA, and down-regulated protein levels of SIRT1, Nrf2, ZO-1, CX43, β-catenin, and occludin (P<0.05, P<0.01) and mRNA levels of SIRT1, Nrf2, ZO-1, CX43, and β-catenin in the testicular tissue (P<0.05, P<0.01). After treatment, the testicular tissue, blood-testis barrier structure, and score of spermatogenic function (P<0.01) were improved in the Cuscutae Semen-Lycii Fructus granules group, Cuscutae Semen-Lycii Fructus total flavonoids group, and L-carnitine group. Compared with the model group, the treatment groups presented lowered levels of GSH-Px and SOD (P<0.05, P<0.01), and the Cuscutae Semen-Lycii Fructus granule group showed a decline in MDA level. The protein and mRNA levels of SIRT1, Nrf2, ZO-1, CX43, β-catenin, and occludin were up-regulated in the Cuscutae Semen-Lycii Fructus granules group and total flavonoids group (P<0.05, P<0.01). ConclusionThe herb pair Cuscutae Semen-Lycii Fructus can regulate the SIRT1/Nrf2 pathway to inhibit oxidative stress and alleviate the blood-testis barrier damage, thereby improving the spermatogenic function in the rat model of OAS. Total flavonoids may be the material basis for the therapeutic effect of Cuscutae Semen-Lycii Fructus.
6.Carthamus tinctorius L.extract ameliorates alcoholic liver disease by modulating PI3K/Akt/FoxO signaling pathway
Wen-Xuan WANG ; Xiang-Lei FU ; Man QI ; Fu-Rong FAN ; Fu-Rong ZHU ; Yuan-Chuang WANG ; Kai-Yue ZHANG ; Min LIU ; Sheng-Hui CHU
Chinese Pharmacological Bulletin 2024;40(6):1137-1145
Aim To investigate the effects of Cartham-us tinctorius L.extract(CTLE)on oxidative stress,lipid metabolism,and apoptosis levels of mice with al-cohol-induced liver injury and its mechanism of action.Methods The mouse model of alcohol-associated liver disease was established by chronic alcohol feeding and acute alcohol gavage.Mice were randomly divided into four groups.During the modeling period,the state changes of mice were observed every day,and their weight was recorded.At the end of modeling,blood and liver tissues were collected from each group of mice.The blood of mice was analyzed biochemically,and HE staining and Oil Red O staining were used to evaluate further the degree of pathological damage in the liver of mice.Quantitative real-time PCR(qPCR)and Western blot were applied to detect the mRNA and protein expression levels of p-PI3K,PI3K,p-Akt,Akt,p-mTOR,mTOR,p-FoxO1,FoxO1,p-FoxO3a,FoxO3a,p-FoxO4,FoxO4,BCL and BAX factors.Results Compared to the model group,the CTLE administration group showed improved hepatic patho-logical injury and reduced lipid deposition.The bio-chemical indexes in serum and liver,such as ALT,AST,TG,TC,and MDA levels were reduced,while GSH and SOD levels increased.Regulating the PI3K/Akt/FoxO pathway resulted in increased production of SOD,which reduced damage and apoptosis caused by reactive oxygen species(ROS).Conclusions CTLE can exert anti-oxidative stress and anti-apoptotic effects through the PI3K/Akt/FoxO pathway and attenuates alcoholic liver injury in mice,providing new ideas for the treatment of alcoholic liver disease and the develop-ment of related drugs.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail