1.Effect of Icariin on Myocardial Remodeling in Rats Based on Vitamin D Regulation of Dendritic Cell Phenotype
Qian LI ; Yujia CHEN ; Yan ZHOU ; Wen LI ; Liancheng GUAN ; Huanzhen WANG ; Yunzhi CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):76-85
ObjectiveTo investigate the effect of icariin (ICA) on the phenotype of dendritic cells (DCs) in heart tissue of the Dahl salt-sensitive myocardial remodeling model of rats and its regulation on the vitamin D system. MethodsMale Dahl salt-resistant rats were divided into a normal group, and male Dahl salt-sensitive rats were divided into a model group, low-, medium-, and high-dose ICA groups (30, 60, 120 mg·kg-1·d-1), and Vitamin D group (3×10-5 mg·kg-1·d-1). In addition to the normal group, the other groups were given an 8% high salt diet to establish a myocardial remodeling model and received intragastric administration after successful modelling once a day for six weeks. The dynamic changes in tail artery blood pressure were monitored, and detection of cardiac ultrasound function in rats was performed. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the morphological changes in rat heart tissue. The phenotype of DCs and T helper cell 17 (Th17)/regulatory T cell (Treg) ratio were detected by flow cytometry. The mRNA and protein expression of vitamin D receptor (VDR), 1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1), forkhead frame protein 3 (FoxP3), solitaire receptor γt (RORγt), myocardial type Ⅰ collagen (ColⅠ), and type collagen (ColⅢ) in heart tissue was detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultsCompared with the normal group, the model group showed disordered arrangement and rupture of myocardial cells, nuclear condensation, significant edema of myocardial tissue, significant proliferation of collagen fibers in a network distribution, and a significant increase in tail artery blood pressure, left ventricular end diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD) (P<0.05). The phenotype of cardiac DCs was CD40, CD80, and CD86, and the levels of major histocompatibility complex Ⅱ (MHC-Ⅱ), Th17 cells, and Th17/Treg were significantly increased (P<0.05). The mRNA and protein expression of CYP24A1 and RORγt in the heart, as well as the mRNA expression of ColⅠ and ColⅢ, were significantly increased (P<0.05). The left ventricular ejection fraction (LVEF), interventricular septal thickness (IVSD), and left ventricular posterior wall thickness (LVPWD) were significantly decreased (P<0.05). The phenotype of cardiac DCs such as CD11, CD11b, and Treg cells, were significantly reduced (P<0.05), while the mRNA and protein expression of cardiac VDR, CYP27B1, and FoxP3 were significantly decreased (P<0.05). Compared with the model group, the low-, medium-, and high-dose ICA groups and vitamin D group significantly reduced myocardial cell rupture and nuclear consolidation in rats. The high-dose ICA group and vitamin D group showed a small amount of myocardial cell rupture and nuclear consolidation, improving myocardial fiber arrangement to varying degrees and significantly reducing myocardial fiber rupture and proliferation. The tail artery blood pressure, LVEDD, and LVESD were significantly decreased in the low-, medium-, and high-dose ICA groups and vitamin D group (P<0.05), and the phenotype of cardiac DCs including CD40, CD80, CD86, MHC-Ⅱ, Th17 cells, and Th17/Treg were significantly decreased (P<0.05). The mRNA and protein expression of CYP24A1 and RORγt, and the mRNA expression of ColⅠ and ColⅢ in the heart were significantly decreased in the medium- and high-dose ICA groups and vitamin D group (P<0.05). The LVEF, IVSD, and LVPWD of myocardial remodeling model rats in the low-, medium-, and high-dose ICA groups and vitamin D group were significantly increased (P<0.05). The phenotypes of cardiac DCs including CD11, CD11b, and Treg cells were significantly increased in the medium- and high-dose ICA groups and the Vitamin D group (P<0.05). The mRNA and protein expressions of VDR, CYP27B1, and FoxP3 in the heart were significantly increased in the medium- and high-dose ICA groups and vitamin D group (P<0.05). ConclusionICA can regulate tail artery blood pressure, cardiac structural and functional damage, and myocardial tissue fibrosis and inhibit phenotype and functional maturation of DCs in heart tissue in the myocardial remodeling model of Dahl salt-sensitive rats. It can also affect the gene and protein expression of VDR, CYP24A1, and CYP27B1, achieving its intervention in Th17/Treg balance in the immune process of myocardial remodeling possibly by regulating vitamin D/VDR in heart tissue.
2.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
3.Effects of Electroacupuncture at "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) on Nociceptive Sensitization and PKC/TRPV1 Pathway in the Trigeminal Ganglion of Chronic Migraine Model Rats
Yixiang ZENG ; Runze TU ; Shucong ZHAO ; Yang YANG ; Haojia WEN ; Zhuozhong HE ; Shengli ZHOU ; Lei TAN ; Ke HE ; Lei FU
Journal of Traditional Chinese Medicine 2025;66(3):283-289
ObjectiveTo explore the possible mechanisms of electroacupuncture at Fengchi (GB 20), Waiguan (TE 5), and Yanglingquan (GB 34) in treating chronic migraine from the perspective of nociceptive sensitization. MethodsForty SPF-grade SD rats were randomly divided into blank group, model group, electroacupuncture group, electroacupuncture + agonist group, and inhibitor group, with 8 rats in each group. Except for the blank group, rats were injected intraperitoneally with nitroglycerin to establish a chronic migraine rat model. After successful modeling, the electroacupuncture group received electroacupuncture at bilateral "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) for 30 minutes each session. The electroacupuncture + agonist group received the same electroacupuncture treatment and additional injection of protein kinase C (PKC) agonist Phorbol 12-myristate 13-acetate (1.0 ng/μl, 25 μl) via the infraorbital foramen. The inhibitor group received PKC inhibitor Chelerythrine Chloride (1.0 ng/μl, 10 μl) via the infraorbital foramen. The blank group, model group, and inhibitor group underwent restraint for 30 minutes without other interventions. All groups were continuously intervened for 5 days. After the intervention, the nociceptive thresholds (mechanical and thermal pain) of the periorbital area and hind paw were measured. The expression levels of transient receptor potential vanillic acid subtype 1 (TRPV1), phosphorylated TRPV1 (p-TRPV1), PKC proteins, Trpv1, Pkc mRNA, and the average fluorescence intensity of transient receptor potential vanillic acid subtype 1 (TRPV1) and PKC in the trigeminal ganglion were detected using Western Blot, real-time fluorescence quantitative PCR, and immunofluorescence methods. ResultsCompared with the blank group, the mechanical and thermal pain thresholds of the periorbital area and hind paw were reduced in the model group, and the protein levels of TRPV1, PKC, p-TRPV1, as well as the mRNA expression of Trpv1 and Pkc, and the average fluorescence intensity of TRPV1 and PKC in the trigeminal ganglion significantly increased (P<0.05 or P<0.01). Compared with the model group, the electroacupuncture group exhibited increased mechanical and thermal pain thresholds in the periorbital and hind paw areas, and decreased protein levels of TRPV1, PKC, p-TRPV1, mRNA expression of Trpv1 and Pkc, and average fluorescence intensity of TRPV1. In the electroacupuncture + agonist group, the average fluorescence intensity of TRPV1 in the trigeminal ganglion decreased. The inhibitor group exhibited increased mechanical pain thresholds in the periorbital area and thermal pain thresholds in the hind paw, along with decreased protein levels of TRPV1, PKC, p-TRPV1, and the average fluorescence intensity of TRPV1 and PKC (P<0.05 or P<0.01). Compared with the electroacupuncture group, the electroacupuncture + agonist group showed an increase in the protein levels of TRPV1, PKC, p-TRPV1, and the mRNA expression of Trpv1 (P<0.05 or P<0.01). ConclusionElectroacupuncture at the "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) acupoints can increase the mechanical and thermal pain thresholds in chronic migraine rats and alleviate nociceptive sensitization. The mechanism may be related to the inhibition of PKC/TRPV1 pathway.
4.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
5.Diagnosis and treatment of cirrhotic portal hypertension with spontaneous portosystemic shunt: Current status and prospects
Yaxin CHEN ; Wen GUO ; Kaige LIU ; Qian LI ; Mingxin ZHANG
Journal of Clinical Hepatology 2025;41(1):176-182
Liver cirrhosis is the terminal stage of various chronic liver diseases, with the main clinical manifestation of portal hypertension, which can lead to spontaneous portosystemic shunt (SPSS). SPSS is very common in clinical practice and is closely associated with the prognosis of patients. This article summarizes the recent studies in the clinical significance of cirrhotic portal hypertension with SPSS, the controversies in studies, and the current status and future prospects and challenges of treatment, in order to provide a reference for the standardized diagnosis and treatment of portal hypertension.
6.Factors influencing intraocular pressure after femtosecond laser surgery and verification of intraocular pressure correction formulas
Chuanhai ZHOU ; Lijun WANG ; Long WEN ; Haobo FAN ; Zexin YE
International Eye Science 2025;25(3):506-510
AIM: To analyze the factors affecting non-contact intraocular pressure(IOPNCT)measurements after femtosecond laser-assisted small incision lenticule extraction(SMILE), explore the correlation of IOPNCT with central corneal thickness(CCT)and corneal curvature after SMILE, and construct the corresponding regression model which will provide scientific basis for clinical evaluation of the true IOP of patients after SMILE.METHODS: Data from a retrospective analysis of 107 myopic patients(206 eyes)who underwent SMILE and 107 myopic patients(201 eyes)received femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery from June 2023 to May 2024 were examined. IOPNCT, CCT, and corneal curvature before surgery and at 1 and 3 mo were collected. The preoperative and postoperative IOPNCT, CCT and corneal curvature were analyzed by ANOVA and Pearson correlation analysis, and multiple linear regression models were constructed to evaluate the association of postoperative changes of IOPNCT, CCT and corneal curvature.RESULTS: There were significant differences in IOPNCT, CCT, and corneal curvature of both SMILE and FS-LASIK patients(all P<0.001), there was no significant difference between two groups and interaction effects(all P>0.05), and the IOPNCT, CCT and corneal curvature at 1 and 3 mo post-surgery were significantly lower than preoperative(all P<0.05). Pearson correlation analysis showed a positive correlation between IOPNCT and CCT at 1 and 3 mo after SMILE(r=0.261, 0.267, all P<0.001), but no significant correlation with corneal curvature(all P>0.05). Multiple linear regression analysis of IOPNCT with CCT and corneal curvature at 1 mo after SMILE indicated that the regression equation was: Y=3.426+0.019X1-0.058X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistical significant difference in the equation(F=7.654, P=0.001); the regression equation for 3 mo after surgery was: Y=2.056+0.020X1-0.038 X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistically significance in the equation(F=7.903, P<0.001). The regression equation of postoperative IOPNCT change(△IOPNCT)and intraoperative cutting corneal thickness(△CCT)and corneal curvature at 1 mo was Y=-2.252+0.008X1+0.587X2(Y represents △IOPNCT, X1 stands for the △CCT, X2 represents the corneal curvature change value), with statistical significant difference in the equation(F=17.550, P<0.001); the regression equation for 3 mo after surgery was: Y=-2.168+0.024X1+0.281X2(Y represents △IOPNCT, X1 represents △CCT, X2 indicates the corneal curvature change values), with statistical significant difference in the equation(F=16.030, P<0.001).CONCLUSION: After SMILE and FS-LASIK surgery, the IOPNCT value of patients was mainly affected by CCT compared with preoperative surgery, and the short-term use of hormone eye drops, fluorometholone, did not cause a significant increase in IOP; both the IOP correction formula at 1 and 3 mo postoperatively can be used clinically to evaluate and correct actual IOP in patients after SMILE.
7.Factors influencing intraocular pressure after femtosecond laser surgery and verification of intraocular pressure correction formulas
Chuanhai ZHOU ; Lijun WANG ; Long WEN ; Haobo FAN ; Zexin YE
International Eye Science 2025;25(3):506-510
AIM: To analyze the factors affecting non-contact intraocular pressure(IOPNCT)measurements after femtosecond laser-assisted small incision lenticule extraction(SMILE), explore the correlation of IOPNCT with central corneal thickness(CCT)and corneal curvature after SMILE, and construct the corresponding regression model which will provide scientific basis for clinical evaluation of the true IOP of patients after SMILE.METHODS: Data from a retrospective analysis of 107 myopic patients(206 eyes)who underwent SMILE and 107 myopic patients(201 eyes)received femtosecond laser-assisted in situ keratomileusis(FS-LASIK)surgery from June 2023 to May 2024 were examined. IOPNCT, CCT, and corneal curvature before surgery and at 1 and 3 mo were collected. The preoperative and postoperative IOPNCT, CCT and corneal curvature were analyzed by ANOVA and Pearson correlation analysis, and multiple linear regression models were constructed to evaluate the association of postoperative changes of IOPNCT, CCT and corneal curvature.RESULTS: There were significant differences in IOPNCT, CCT, and corneal curvature of both SMILE and FS-LASIK patients(all P<0.001), there was no significant difference between two groups and interaction effects(all P>0.05), and the IOPNCT, CCT and corneal curvature at 1 and 3 mo post-surgery were significantly lower than preoperative(all P<0.05). Pearson correlation analysis showed a positive correlation between IOPNCT and CCT at 1 and 3 mo after SMILE(r=0.261, 0.267, all P<0.001), but no significant correlation with corneal curvature(all P>0.05). Multiple linear regression analysis of IOPNCT with CCT and corneal curvature at 1 mo after SMILE indicated that the regression equation was: Y=3.426+0.019X1-0.058X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistical significant difference in the equation(F=7.654, P=0.001); the regression equation for 3 mo after surgery was: Y=2.056+0.020X1-0.038 X2(Y represents IOPNCT, X1 represents the CCT, and X2 represents the corneal curvature), with statistically significance in the equation(F=7.903, P<0.001). The regression equation of postoperative IOPNCT change(△IOPNCT)and intraoperative cutting corneal thickness(△CCT)and corneal curvature at 1 mo was Y=-2.252+0.008X1+0.587X2(Y represents △IOPNCT, X1 stands for the △CCT, X2 represents the corneal curvature change value), with statistical significant difference in the equation(F=17.550, P<0.001); the regression equation for 3 mo after surgery was: Y=-2.168+0.024X1+0.281X2(Y represents △IOPNCT, X1 represents △CCT, X2 indicates the corneal curvature change values), with statistical significant difference in the equation(F=16.030, P<0.001).CONCLUSION: After SMILE and FS-LASIK surgery, the IOPNCT value of patients was mainly affected by CCT compared with preoperative surgery, and the short-term use of hormone eye drops, fluorometholone, did not cause a significant increase in IOP; both the IOP correction formula at 1 and 3 mo postoperatively can be used clinically to evaluate and correct actual IOP in patients after SMILE.
8.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
9.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
10.The Use of Speech in Screening for Cognitive Decline in Older Adults
Si-Wen WANG ; Xiao-Xiao YIN ; Lin-Lin GAO ; Wen-Jun GUI ; Qiao-Xia HU ; Qiong LOU ; Qin-Wen WANG
Progress in Biochemistry and Biophysics 2025;52(2):456-463
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that severely affects the health of the elderly, marked by its incurability, high prevalence, and extended latency period. The current approach to AD prevention and treatment emphasizes early detection and intervention, particularly during the pre-AD stage of mild cognitive impairment (MCI), which provides an optimal “window of opportunity” for intervention. Clinical detection methods for MCI, such as cerebrospinal fluid monitoring, genetic testing, and imaging diagnostics, are invasive and costly, limiting their broad clinical application. Speech, as a vital cognitive output, offers a new perspective and tool for computer-assisted analysis and screening of cognitive decline. This is because elderly individuals with cognitive decline exhibit distinct characteristics in semantic and audio information, such as reduced lexical richness, decreased speech coherence and conciseness, and declines in speech rate, voice rhythm, and hesitation rates. The objective presence of these semantic and audio characteristics lays the groundwork for computer-based screening of cognitive decline. Speech information is primarily sourced from databases or collected through tasks involving spontaneous speech, semantic fluency, and reading, followed by analysis using computer models. Spontaneous language tasks include dialogues/interviews, event descriptions, narrative recall, and picture descriptions. Semantic fluency tasks assess controlled retrieval of vocabulary items, requiring participants to extract information at the word level during lexical search. Reading tasks involve participants reading a passage aloud. Summarizing past research, the speech characteristics of the elderly can be divided into two major categories: semantic information and audio information. Semantic information focuses on the meaning of speech across different tasks, highlighting differences in vocabulary and text content in cognitive impairment. Overall, discourse pragmatic disorders in AD can be studied along three dimensions: cohesion, coherence, and conciseness. Cohesion mainly examines the use of vocabulary by participants, with a reduction in the use of nouns, pronouns, verbs, and adjectives in AD patients. Coherence assesses the ability of participants to maintain topics, with a decrease in the number of subordinate clauses in AD patients. Conciseness evaluates the information density of participants, with AD patients producing shorter texts with less information compared to normal elderly individuals. Audio information focuses on acoustic features that are difficult for the human ear to detect. There is a significant degradation in temporal parameters in the later stages of cognitive impairment; AD patients require more time to read the same paragraph, have longer vocalization times, and produce more pauses or silent parts in their spontaneous speech signals compared to normal individuals. Researchers have extracted audio and speech features, developing independent systems for each set of features, achieving an accuracy rate of 82% for both, which increases to 86% when both types of features are combined, demonstrating the advantage of integrating audio and speech information. Currently, deep learning and machine learning are the main methods used for information analysis. The overall diagnostic accuracy rate for AD exceeds 80%, and the diagnostic accuracy rate for MCI also exceeds 80%, indicating significant potential. Deep learning techniques require substantial data support, necessitating future expansion of database scale and continuous algorithm upgrades to transition from laboratory research to practical product implementation.

Result Analysis
Print
Save
E-mail