1.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
2.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
3.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
4.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
5.Extension and Application Strategy of Four Examinations of Traditional Chinese Medicine in Chronic Kidney Disease
Zhengxin LIU ; Qin SONG ; Yining HE ; Xiaofan YIN ; Tianyang QIAN ; Weiming HE
Journal of Traditional Chinese Medicine 2025;66(13):1327-1332
Traditional four examinations of traditional Chinese medicine (TCM) are based on the symptoms and signs of patients, which are the advantages of TCM but also have shortcomings. Chronic kidney disease has the characteristics of insidiousness, long-term, deficiency and variability during its onset, which are difficult to be intervened in time based on only symptoms, therefore it is necessary to extend the application of the four examinations in the diagnosis and treatment process of chronic kidney disease. Based on the background of the continuous development of TCM syndrome differentiation techniques, this article proposed the extension and application strategies of the traditional four examinations in chronic kidney disease, including the incorporation of microscopic syndrome differentiation to identify the causes of kidney disease and prevent symptom deterioration; the utilization of accurate examination information enhanced by artificial intelligence for controlling development of existing disease; the integration of disease differentiation and syndrome differentiation to summarize clinical rules towards using constant to measure variation; and the establishment of a kidney disease database for the storage of four examinations information to prevent recurrence after recovery. The four above extension and application strategies can be used to achieve the long-term management and treatment effects of timely and early diagnosis, dynamic observation of the condition, accurate application of intervention, and strengthened prognosis assessment in the diagnosis and treatment of chronic kidney disease, and expand the advantages of TCM in the prevention and treatment of chronic kidney disease.
6.Impact of Wenyang lishui formula on ventricular remodeling in rats with pulmonary hypertension-induced right heart failure
Sijian FENG ; Yan HUANG ; Aimin XING ; Mei YUAN ; Yafang LIU ; Weiming WANG
China Pharmacy 2025;36(20):2531-2536
OBJECTIVE To discuss the impact of Wenyang lishui formula on ventricular remodeling in rats with pulmonary hypertension-induced right heart failure (RHF) based on the Hippo/Yes-associated protein (YAP) signaling pathway. METHODS Ten rats were randomly selected as the control group. The remaining 63 rats were given a single intraperitoneal injection of monocrotaline to establish the pulmonary hypertension-induced RHF model. The 50 rats that successfully underwent the model establishment were randomly divided into the RHF group, low-dose group of Wenyang lishui formula (4.25 g/kg), high-dose group of the Wenyang lishui formula (17.00 g/kg), furosemide group (20 mg/kg), and high-dose group of Wenyang lishui formula+ Hippo/YAP signaling pathway activator group (17.00 g/kg of Δ Wenyang lishui formula+16 mg/kg of PY-60), with 10 rats in each group. The rats in each group were given the corresponding drug solution or normal saline by gavage or/andtail vein injection, once a day, for 4 consecutive weeks. During the experiment, the general conditions of the rats in each group were observed; after the last administration, the right ventricular diameter, right atrial diameter, end-diastolic volume, pulmonary artery blood flow acceleration time (PAAT) and its ratio to ejection time (ET) (PAAT/ET), pulmonary artery pressure and its ratio to pulmonary arterial flow velocity (pulmonary artery pressure/velocity) were measured. The plasma levels of brain natriuretic peptide and angiotensin Ⅱ (Ang Ⅱ) were detected. The pathological changes of the right ventricular tissue were observed, and the collagen volume fraction, the phosphorylation levels of the large tumor suppressor 1/2 (LATS1/2) and YAP, and the protein expression of the transcriptional coactivator of PDZ-binding motif (TAZ) were also detected. RESULTS Compared with the RHF group, the rats in Wenyang lishui formula low-dose and high-dose groups showed improved hair color, movement, diet, and mental state. The atrophy of right ventricular myocardial cells, the increase of inflammatory cells, collagen deposition, and hypertrophy of myocardial fibers were significantly alleviated. The right ventricular internal diameter, right atrial internal diameter, end-diastolic volume, pulmonary artery pressure, pulmonary artery pressure/velocity, the plasma levels of brain natriuretic peptide and AngⅡ , collagen volume fraction, the phosphorylation level of YAP and protein expression of TAZ were significantly decreased, while the PAAT, PAAT/ET and the phosphorylation level of LATS1/2 were significantly increased (P<0.05). PY-60 could significantly reverse the improvement effects of high-dose Wenyang lishui formula on the above quantitative indicators (P< 0.05). CONCLUSIONS Wenyang lishui formula can restore the right heart function of pulmonary hypertension-induced RHF rats, reduce their pulmonary artery pressure, alleviate the pathological changes in their cardiac tissues, and the above effects may be related to the activation of Hippo expression and the inhibition of YAP phosphorylation.
7.Efficacy and safety of using an enteral immunonutrition formula in the enhanced recovery after surgery protocol for Chinese patients with gastrointestinal cancers undergoing surgery: A randomized, open-label, multicenter trial (healing trial).
Jianchun YU ; Gang XIAO ; Yanbing ZHOU ; Yingjiang YE ; Han LIANG ; Guole LIN ; Qi AN ; Xiaodong LIU ; Bin LIANG ; Baogui WANG ; Weiming KANG ; Tao YU ; Yulong TIAN ; Chao WANG ; Xiaona WANG
Chinese Medical Journal 2025;138(21):2847-2849
8.Torso Simulation Research on Electromagnetic Compatibility of Implantable Neurostimulator.
Qifei LI ; Weiming WANG ; Weiqiang ZHANG ; Linzhi DAI ; Jiawei LIU
Chinese Journal of Medical Instrumentation 2025;49(2):212-218
In the YY 0989.3-2023 standard, clause 27.106 specifies the protection test against electromagnetic interference, but it only briefly describes the test level for electromagnetic exposure, and does not detail the parameters of the torso. This study aims to explore the internal field distribution for different torso parameters under electromagnetic exposure, and explore the patterns of field distribution through modeling and simulation. The results indicate that the parameters of the torso significantly affect the internal field distribution. The findings of this study provide a basis and reference for the electromagnetic compatibility test for implantable neurostimulator products.
Electromagnetic Fields
;
Implantable Neurostimulators
;
Computer Simulation
9.Correlation analysis between Pirani score and talo-navicular angle,calcaneo-cuboid angle and tibio-calcaneall angle of infant clubfoot under ultrasound
Wenjing WANG ; Bing XIA ; Yingmei DONG ; Panpan HE ; Zhiwei CHENG ; Fengqun MA ; Chaohua WANG ; Fuyun LIU ; Weiming HU ; Feipeng WANG ; Yufeng ZHAO ; Hezhou LI ; Jiale FU
Chinese Journal of Surgery 2024;62(3):210-215
Objective:To explore the evaluation effect of ultrasonography and Pirani score on tarsal deformity, treatment effect and pseudo-correction of congenital clubfoot in infants and young children, and the correlation between the two methods.Methods:This is a retrospective case series study. The clinical data of 26 children (40 feet) with congenital clubfoot who were evaluated by ultrasonography in the Third Affiliated Hospital of Zhengzhou University from January 2020 to January 2023 were retrospectively collected. There were 16 males and 10 females. The age at the first ultrasound examination was ( M(IQR)) 9.0 (18.0) days (range: 1 to 46 days). All patients were treated with Ponseti method by the same physician. The Pirani scores before and after treatment and at the last examination, and the talonavicular angle, calcaneocuboid angle and tibiocalcaneal angle measured by ultrasound were collected, and the treatment and follow-up were recorded. Paired sample t test, repeated measures analysis of variance or Kruskal-Wallis test were used for data comparison, and Spearman correlation analysis was used for correlation analysis. The receiver operating characteristic curve was used to calculate the efficacy of ultrasound in evaluating different Pirani scores. Results:The number of plaster fixation in 26 children was 4.0 (1.0) times (range: 2 to 8 times). The medial talonavicular angle and posterior tibiocalcaneal angle were significantly improved after treatment and at the last follow-up compared with those before treatment, and the differences were statistically significant (all P<0.01). There was no difference in lateral calcaneocuboid angle before and after treatment and at the last follow-up ( F=1.971, P>0.05). Pseudo-correction occurred in 2 cases (2 feet) during the treatment, with an incidence of 5%. Correlation analysis showed that there was a moderate positive correlation between talonavicular angle and Pirani midfoot score ( r=0.480, P<0.01). There was no correlation between calcaneocuboid angle and Pirani midfoot score ( r=0.114, P=0.105). There was a moderate negative correlation between tibial heel angle and Pirani hindfoot score ( r=-0.566, P<0.01). The cut-off point of Pirani midfoot score of 1.5 was 38.78°, the sensitivity was 0.90, the specificity was 0.56, and the area under the curve was 0.75. The cut-off value of angle was 27.51 °, the sensitivity was 0.16, the specificity was 0.92, and the area under the curve was 0.44.The cut-off points of Pirani midfoot score of 3.0 were 45.08°and 9.96°, the sensitivity was 0.94 and 0.91, the specificity was 0.37 and 0.42, and the area under the curve was 0.59 and 0.62, respectively. The cut-off values of Pirani hindfoot score of 2.0 and 3.0 were 167.46° and 160.15°, respectively. The sensitivity was 0.75 and 0.67, the specificity was 0.81 and 0.83, and the area under the curve was 0.78 and 0.71, respectively. Conclusion:Ultrasound can complement with Pirani score, visually and dynamically observe the morphology and position changes of talonavicular joint, calcaneocuboid joint and tibiotalocalcaneal joint, monitor the recovery and pseudo-correction of tarsal bones, and better evaluate the therapeutic effect.
10.Correlation analysis between Pirani score and talo-navicular angle,calcaneo-cuboid angle and tibio-calcaneall angle of infant clubfoot under ultrasound
Wenjing WANG ; Bing XIA ; Yingmei DONG ; Panpan HE ; Zhiwei CHENG ; Fengqun MA ; Chaohua WANG ; Fuyun LIU ; Weiming HU ; Feipeng WANG ; Yufeng ZHAO ; Hezhou LI ; Jiale FU
Chinese Journal of Surgery 2024;62(3):210-215
Objective:To explore the evaluation effect of ultrasonography and Pirani score on tarsal deformity, treatment effect and pseudo-correction of congenital clubfoot in infants and young children, and the correlation between the two methods.Methods:This is a retrospective case series study. The clinical data of 26 children (40 feet) with congenital clubfoot who were evaluated by ultrasonography in the Third Affiliated Hospital of Zhengzhou University from January 2020 to January 2023 were retrospectively collected. There were 16 males and 10 females. The age at the first ultrasound examination was ( M(IQR)) 9.0 (18.0) days (range: 1 to 46 days). All patients were treated with Ponseti method by the same physician. The Pirani scores before and after treatment and at the last examination, and the talonavicular angle, calcaneocuboid angle and tibiocalcaneal angle measured by ultrasound were collected, and the treatment and follow-up were recorded. Paired sample t test, repeated measures analysis of variance or Kruskal-Wallis test were used for data comparison, and Spearman correlation analysis was used for correlation analysis. The receiver operating characteristic curve was used to calculate the efficacy of ultrasound in evaluating different Pirani scores. Results:The number of plaster fixation in 26 children was 4.0 (1.0) times (range: 2 to 8 times). The medial talonavicular angle and posterior tibiocalcaneal angle were significantly improved after treatment and at the last follow-up compared with those before treatment, and the differences were statistically significant (all P<0.01). There was no difference in lateral calcaneocuboid angle before and after treatment and at the last follow-up ( F=1.971, P>0.05). Pseudo-correction occurred in 2 cases (2 feet) during the treatment, with an incidence of 5%. Correlation analysis showed that there was a moderate positive correlation between talonavicular angle and Pirani midfoot score ( r=0.480, P<0.01). There was no correlation between calcaneocuboid angle and Pirani midfoot score ( r=0.114, P=0.105). There was a moderate negative correlation between tibial heel angle and Pirani hindfoot score ( r=-0.566, P<0.01). The cut-off point of Pirani midfoot score of 1.5 was 38.78°, the sensitivity was 0.90, the specificity was 0.56, and the area under the curve was 0.75. The cut-off value of angle was 27.51 °, the sensitivity was 0.16, the specificity was 0.92, and the area under the curve was 0.44.The cut-off points of Pirani midfoot score of 3.0 were 45.08°and 9.96°, the sensitivity was 0.94 and 0.91, the specificity was 0.37 and 0.42, and the area under the curve was 0.59 and 0.62, respectively. The cut-off values of Pirani hindfoot score of 2.0 and 3.0 were 167.46° and 160.15°, respectively. The sensitivity was 0.75 and 0.67, the specificity was 0.81 and 0.83, and the area under the curve was 0.78 and 0.71, respectively. Conclusion:Ultrasound can complement with Pirani score, visually and dynamically observe the morphology and position changes of talonavicular joint, calcaneocuboid joint and tibiotalocalcaneal joint, monitor the recovery and pseudo-correction of tarsal bones, and better evaluate the therapeutic effect.

Result Analysis
Print
Save
E-mail