1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Impact of "Internet +" empowerment education based on timing it right on psychological craving, anxiety symptoms and relapse rates in patients with alcohol dependence
Hao WANG ; Wei LI ; Wen'ge ZHEN ; Yuanyuan LI ; Jie LIU
Sichuan Mental Health 2025;38(1):34-40
BackgroundAlcohol dependence patients are prone to relapse after their attempts to quit drinking, which poses a considerable threat to their physical and mental health and creates a heavy burden on their families. Currently, empowerment education is increasingly being utilized in the rehabilitation management of chronic diseases, but there remains a striking lack of empirical research on the application of "Internet +" empowerment education based on timing it right in alcohol dependence patients. ObjectiveTo explore the impact of "Internet +" empowerment education based on timing it right on patients with alcohol dependence, in order to maximize the reduction in relapse rates, craving for alcohol and severity of anxiety symptoms. MethodsA total of 120 patients who were hospitalized in the Department of Addiction Medicine, Hebei Provincial Mental Health Center from May 2022 to April 2023 and met the diagnostic criteria for alcohol dependence in the International Classification of Diseases, tenth edition (ICD-10) were enrolled, and they were classified into study group (n=62) and control group (n=58) using random number table methods. Both groups received standard medication and routine care. Additionally, study group underwent a 6-month "Internet +" empowerment education based on timing it right. At baseline, all subjects were assessed using Penn Alcohol Craving Scale (PACS) and Self-rating Anxiety Scale (SAS). Three months and six months after intervention, assessments were conducted using PACS, SAS and Michigan Alcoholism Screening Test (MAST). ResultsThe relapse rates after three and six months of intervention were both lower in study group than those in control group, with statistically significant differences (χ2=8.575, 8.828, P<0.01). ANOVA with repeated measures on PACS total score and scores of each item revealed a significant time effect, group effect and time×group interaction effect (F=159.714~837.751, 84.645~393.606, 24.302~137.896, P<0.01). And significant time effect, group effect and time×group interaction effect were also reported on SAS scores (F=166.237, 65.325, 24.724, P<0.01). Conclusion"Internet +" empowerment education based on timing it right may help reduce relapse rates, alcohol cravings and severity of anxiety symptoms among patients with alcohol dependence. [Funded by 2023 Annual Hebei Provincial Medical Scientific Research Project Plan (number, 20231537)]
3.A new glycoside from Alstonia mairei Lévl.
Li-ke WANG ; Bing-yan LI ; Zhen-zhu ZHAO ; Yan-zhi WANG ; Xiao-kun LI ; Wei-sheng FENG ; Ying-ying SI
Acta Pharmaceutica Sinica 2025;60(1):191-195
Nine compounds were isolated and purified from 90% ethanol extract of
4.Polymorphism and Tissue Expression Analysis of TYR and MC1R Genes in Guinea Pigs with Different Coat-Color Phenotypes
Yingen TANG ; Yaxian FENG ; Min ZHONG ; Zhen WEI ; Lie WANG ; Diwen LIU
Laboratory Animal and Comparative Medicine 2025;45(1):21-29
Objective To explore the polymorphism of tyrosinase (TYR) and melanocortin 1 receptor (MC1R) genes and their mRNA expression levels in relation to coat-color phenotypes in guinea pigs, providing genetic markers for locating dominant traits in guinea pigs. Methods A total of 57 self-bred ordinary-level guinea pigs were selected and divided into three groups based on coat color: white (n=22), variegated (n=22) and black (n=13). The guinea pigs were euthanized with an overdose of pentobarbital sodium via intraperitoneal injection. DNA was then extracted from the dorsal skin tissue. Polymorphism in the coding sequence (CDS) of the exons of the TYR and MC1R genes in each group was detected by cloning and sequencing. The mRNA expression of the two genes in skin tissues was detected by real-time fluorescent quantitative PCR to investigate the relationship between these genes and guinea pig coat color. Results A single nucleotide polymorphism (SNP) site was found in the CDS region of TYR exon Ⅰ, where the base A was replaced by G. All white guinea pigs had the G/G genotype for TYR, while no deep-colored (variegated and black) guinea pigs exhibited the G/G genotype for TYR. Most deep-colored guinea pigs had the A/A genotype, and a few had A/G genotype. The A/A genotype frequency in black guinea pigs was higher than in variegated guinea pigs. A 2 760 bp sequence deletion was identified in the exon of the MC1R gene, marked as the - gene, with non-deleted samples marked as N gene. Most white guinea pigs had the -/- genotype for MC1R, variegated guinea pigs mainly had the -/N genotype, and black guinea pigs mainly had the N/N genotype, with a few showing the -/N. The TYR gene expression level was higher in white guinea pigs, lower in variegated guinea pigs, and intermediate in black guinea pigs, but there was no significant difference among the three groups (P>0.05). The MC1R gene expression level in white guinea pigs was extremely low, while both variegated and black guinea pigs showed significantly higher levels than white guinea pigs (P<0.01). Black guinea pigs showed significantly higher levels than variegated guinea pigs (P<0.05). ConclusionThe TYR and MC1R genes synergistically regulate coat color of guinea pigs. The G-site mutation in the TYR gene may lead to albinism, and the change of N-site in the MC1R gene affects the depth of the coat color.
5.A Case Study of Using Assisted Reproductive Technology to Rescue Genetically Modified Mice with Reproductive Disorder Phenotypes
Qianqian WANG ; Sijue TAO ; Zhen WEI ; Huihui JIN ; Ping LIU ; Lie WANG
Laboratory Animal and Comparative Medicine 2025;45(1):79-86
ObjectiveThe utilization of assisted reproductive technology to rescue genetically modified mouse strains with reproductive disorders provides a reference for improving techniques to preserve valuable experimental mouse strains. MethodsIn vitro fertilization-embryo transfer (IVF-ET) technology was performed on 28 strains of infertile male mice aged 9-18 months. Several indicators such as sperm density and sperm motility in infertile male mice were assessed to select the most viable sperm for IVF-ET experiments. Fertility rate, abnormal egg rate, and birth rate were recorded after the birth of the pups. An optimized ovarian transplantation procedure was applied to 12 strains of infertile female mice aged 8-18 months. 6-week-old female mice with the same genetic background were selected as recipients. One intact ovary was removed from each recipient mouse, and the contralateral oviduct was ligated. An ovary from a donor mouse was isolated and transplanted orthotopically into the side where the ovary had been removed in the recipient mouse. Twenty-one days post-surgery, recipient mice were co-housed with 8-week-old wild type male mice of the same genetic background for breeding. Data such as the pregnancy rate and live birth rate of the recipients were recorded after the birth of the pups. ResultsIVF-ET successfully rescued 28 mouse strains, with the oldest male mice being 18 months old. The success rate of the first round of IVF-ET experiments was 89.29% (25/28). The average fertility rate of IVF in infertile male mice was (51.01±14.97)%, the abnormal egg rate was (9.03±5.28)%, and the birth rate of offspring mice was (18.60±7.03)%. 39 out of 40 ovarian transplant recipient mice survived, with a pregnancy rate of 33.33% (13/39) for ovarian transplant recipients, and a live birth rate of 17.95% (7/39). Four mouse strains were successfully rescued using optimized ovarian transplantation technology, with the oldest female mice being 18 months old. 8 strains were not rescued as they failed to produce offspring that survived to sexual maturity. ConclusionIVF-ET is an effective approach for rescuing mice with reproductive disorders caused by different reasons, especially for those beyond the optimal breeding age. Ovarian transplantation technology can also be used as an alternative for aged female mice. But its success rate is relatively lower than that of IVF-ET, and carries a higher experimental risk.
6.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
7.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming
8.Frontier technologies and development trends of network pharmacology: a patent bibliometric analysis.
Li TAO ; Zhi-Peng KE ; Tuan-Jie WANG ; Zhen-Zhong WANG ; Liang CAO ; Wei XIAO
China Journal of Chinese Materia Medica 2025;50(11):3070-3078
This study systematically analyzed the global research landscape, technological composition, and core patents in the field of networks target and network pharmacology, and proposes further suggestions based on the IncoPat patent citation database and VOSviewer bibliometric network visualization tool. Using patent literature metrics and scientific knowledge mapping method, technological innovation pathways, research hotspots, and future directions in this field were further revealed. In particular, this field is moving towards data-driven, intelligent, and systematic approaches. Patent analysis indicated that most patent applications in this domain focused on traditional Chinese medicine(TCM), which have provided key engineering technical approaches to explore and solve complex problems of TCM. By integrating big data and artificial intelligence technologies, network targets and network pharmacology have conferred high-precision screening and quality control of key components and targets in herbal formulations and prescriptions, accelerating the clinical translation and industrialization of TCM-based new drugs and health products with medicine-food homology. Therefore, it is essential to optimize the patent protection system and establish integrated technology platforms in this field for ensuring the competitiveness of technological achievements in research and clinical application. These efforts will advance the widespread application and high-quality development of TCM modernization, precision medicine, and innovative drug discovery.
Bibliometrics
;
Patents as Topic
;
Humans
;
Medicine, Chinese Traditional
;
Network Pharmacology/trends*
;
Drugs, Chinese Herbal/pharmacology*
9.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal
10.Mechanistic of Yueju Wan volatile oil in inhibiting inflammation for antidepressant effects by regulating AGE/PI3K/Akt pathway.
Tan-Lu CHU ; Ze-Jun GUO ; Wei ZHANG ; Ling-Feng WANG ; Shu-Rui LYU ; Wan-Yu GUO ; Xiao-Ming ZHONG ; Feng-Mei QIU ; Zhen HUANG
China Journal of Chinese Materia Medica 2025;50(11):3147-3158
The antidepressant activity and molecular mechanisms of Yueju Wan volatile oil were investigated. The Yueju Wan volatile oil was extracted by using supercritical CO_2. Gas chromatography-mass spectrometry(GC-MS) combined with network pharmacology identified 28 chemical constituents in Yueju Wan volatile oil, primarily terpenes and lactones. A total of 123 overlapping targets were associated with depression, including core targets of interleukin-1β(IL-1β), signal transducer and activator of transcription 3(STAT3), and caspase-3(CASP3). These targets were mainly involved in the prolactin, advanced glycation end products/receptor(AGE/RAGE), and phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) signaling pathways. A reserpine-induced depression mouse model was established to evaluate the therapeutic effects and mechanisms of Yueju Wan volatile oil. The effects of Yueju Wan volatile oil on depression-like behavior in mice were evaluated by analyzing body mass, body temperature index, tail suspension immobility time, forced swimming immobility time, and sucrose preference. Hematoxylin-eosin(HE) staining revealed neuronal protection of Yueju Wan volatile oil in the brain of mice. Enzyme-linked immunosorbent assay(ELISA) and Western blot were employed to detect the protein expression of AGEs, IL-1β, phosphorylated PI3K(p-PI3K), Akt, phosphorylated Akt(p-Akt), nuclear factor κB(NF-κB), and brain-derived neurotrophic factor(BDNF). Behavioral evaluation showed that Yueju Wan volatile oil could effectively control the decline of body mass and body temperature of depressed mice, reduce tail suspension and swimming immobility time, and enhance their preference for sucrose. Histopathological examination showed that Yueju Wan volatile oil could alleviate the neuronal damage in CA1 and dentate gyrus(DG) of the hippocampus of mice. ELISA and Western blot results showed that Yueju Wan volatile oil could significantly increase the protein expression levels of PI3K, Akt, and BDNF and significantly decrease the protein expression levels of AGEs, IL-1β, p-PI3K, p-Akt, and NF-κB in the hippocampus of mice. Furthermore, the p-PI3K/PI3K and p-Akt/Akt ratios were significantly decreased at medium and high doses. These findings suggest that the aromatherapy of Yueju Wan volatile oil can significantly improve reserpine-induced depression-like behavior in mice, which may be related to reducing the expression of neuronal membrane protein AGEs, reducing the phosphorylation levels of PI3K and Akt, inhibiting NF-κB entry into the nucleus, and alleviating the release of pro-inflammatory factors and nerve injury.
Animals
;
Antidepressive Agents/chemistry*
;
Mice
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/immunology*
;
Oils, Volatile/chemistry*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Signal Transduction/drug effects*
;
Depression/metabolism*
;
Glycation End Products, Advanced/immunology*
;
Humans

Result Analysis
Print
Save
E-mail