1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Pathogenic Mechanisms of Spleen Deficiency-Phlegm Dampness in Obesity and Traditional Chinese Medicine Prevention and Treatment Strategies:from the Perspective of Immune Inflammation
Yumei LI ; Peng XU ; Xiaowan WANG ; Shudong CHEN ; Le YANG ; Lihua HUANG ; Chuang LI ; Qinchi HE ; Xiangxi ZENG ; Juanjuan WANG ; Wei MAO ; Ruimin TIAN
Journal of Traditional Chinese Medicine 2026;67(1):31-37
Based on spleen deficiency-phlegm dampness as the core pathogenesis of obesity, and integrating recent advances in modern medicine regarding the key role of immune inflammation in obesity, this paper proposes a multidimensional pathogenic network of "obesity-spleen deficiency-phlegm dampness-immune imbalance". Various traditional Chinese medicine (TCM) herbs that strengthen the spleen, regulate qi, and resolve phlegm and dampness can treat obesity by improving spleen-stomach transport and transformation, promoting water-damp metabolism, and regulating immune homeostasis. This highlights immune inflammation as an important entry point to elucidate the TCM concepts of "spleen deficiency-phlegm dampness" and the therapeutic principle of "strengthening the spleen and eliminating dampness to treat obesity". By systematically analyzing the intrinsic connection between "spleen deficiency generating dampness, internal accumulation of phlegm dampness" and immune dysregulation in obesity, this paper aims to provide theoretical support for TCM treatment of obesity based on dampness.
4.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
5.Exploring the treatment approach for bone marrow suppression after radiotherapy and chemotherapy from the perspective of "acute deficiency syndrome"
Zhiming LI ; Fen HUANG ; Jiawang JIANG ; Wei JIANG ; Xiaochun CHEN ; Xin LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):122-126
Bone marrow suppression is one of the common adverse reactions to radiotherapy and chemotherapy. Anticancer treatments such as radiotherapy and chemotherapy first directly damage the patient′s peripheral blood cells, impairing qi and blood; further, they damage the actively proliferating cell populations in the bone marrow, impairing yin and blood; and then they interfere with hematopoietic stem cells, impairing essence and blood. This process is rapid and intense, consistent with the characteristics of " acute deficiency syndrome" , marked by sudden onset, rapid changes, critical condition, complexity and variability, multiple complications, and poor prognosis. Given this, its diagnosis and treatment should differ from those of general deficiency syndromes. This paper advocates the principles and ideas of diagnosis and treatment such as " preventing first and treating early to prevent changes; supplementing for deficiency and strengthening vital qi to eliminate pathogenic factor; urgent rescue for critical conditions, no time to lose; and comprehensive supplementing throughout the process, with severe cases requiring singular action" . This approach is intended to provide theoretical reference and practical guidance for bone marrow suppression after radiotherapy and chemotherapy.
6.Research progress on the anti-tumor effects of traditional Chinese medicine through intervention in the Nrf2/GPX4 signaling pathway
Jie HUANG ; Si LIN ; Chunjuan JIANG ; Ling WEI
China Pharmacy 2025;36(4):507-512
Nuclear factor-erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway plays a key role in the occurrence and development of tumors, and is involved in tumor cell proliferation, apoptosis, ferroptosis, invasion, migration, and drug resistance. Based on the Nrf2/GPX4 signaling pathway, this paper summarizes the research progress of the anti- tumor effects of traditional Chinese medicine. It is found that flavonoids (ginkgetin, luteolin, etc.), terpenoids (atractylenolide, cucurbitacin B, etc.), saponins (polyphyllin Ⅰ, polyphyllin Ⅶ), ester (brusatol) and other effective components, and traditional Chinese medicine extracts (total coumarins in Pileostegia tomentella and total flavonoids of Pterocarya hupehensis Skan), traditional Chinese medicine compounds (Fushao diqin fang, Xiaoai jiedu fang, etc.) can promote ferroptosis in tumor cells by inhibiting Nrf2/GPX4 signaling pathway and the expressions of its upstream and downstream factor proteins, as well as by increasing Fe2+ levels and lipid peroxidation, thereby exerting an antitumor effect.
7.Construction of a Disease-Syndrome Integrated Diagnosis and Treatment System for Gastric "Inflammation-Cancer" Transformation Based on Multi-Modal Phenotypic Modeling
Hao LI ; Huiyao ZHANG ; Wei BAI ; Tingting ZHOU ; Guodong HUANG ; Xianjun RAO ; Yang YANG ; Lijun BAI ; Wei WEI
Journal of Traditional Chinese Medicine 2025;66(5):458-463
By analyzing the current application of multi-modal data in the diagnosis of gastric "inflammation-cancer" transformation, this study explored the feasibility and strategies for constructing a disease-syndrome integrated diagnosis and treatment system. Based on traditional Chinese medicine (TCM) phenomics, we proposed utilizing multi-modal data from literature research, cross-sectional studies, and cohort follow-ups, combined with artificial intelligence technology, to establish a multi-dimensional diagnostic and treatment index system. This approach aims to uncover the complex pathogenesis and transformation patterns of gastric "inflammation-cancer" progression. Additionally, by dynamically collecting TCM four-diagnostic information and modern medical diagnostic information through a long-term follow-up system, we developed three major modules including information extraction, multi-modal phenotypic modeling, and information output, to make it enable real-world clinical data-driven long-term follow-up and treatment of chronic atrophic gastritis. This system can provide technical support for clinical diagnosis, treatment evaluation, and research, while also offering insights and methods for intelligent TCM diagnosis.
8.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
9.The Chinese version of Chronic Illness Rejection and Discrimination Scale: reliability and validity in maintenance hemodialysis patients
Yingjia XU ; Wei HE ; Songhong XIE ; Mingya LI ; Fei HUANG
Sichuan Mental Health 2025;38(1):78-83
BackgroundPerceived discrimination has been identified as a main risk factor for depression in maintenance hemodialysis patients. Chronic Illness Rejection and Discrimination Scale (CIRDS) is a measure for assessing perceived discrimination in individuals with chronic disease. However, the Chinese version of CIRDS for maintenance hemodialysis patients has not yet been established. ObjectiveTo translate CIRDS into Chinese version and evaluate its reliability and validity in maintenance hemodialysis patients, so as to provide an effective tool for assessing the perceived discrimination among maintenance hemodialysis patients. MethodsThe Brislin's model for translation, back-translation, cross-cultural adaptation and pre-experimentation was utilized to develop a Chinese version of CIRDS. A coherent of 250 maintenance hemodialysis patients attending Taihe Hospital Affiliated to Hubei Medical College, from July to October 2023 were selected as the research subjects. The formal scale was refined by employing item analysis, exploratory factor analysis and confirmatory factor analysis. The validity of the scale was evaluated using content validity and construct validity. The reliability of the scale was evaluated using Cronbach's α coefficient, test-retest reliability and split-half reliability. ResultsThe Chinese version of CIRDS consisted of 11 items, including 2 factors (perceived discrimination and perceived rejection). The scale-level content validity index (S-CVI) value was 0.898 and the item-level content validity index (I-CVI) values ranged from 0.875 to 1.000. Two common factors were extracted by exploratory factor analysis and explained 65.41% of the total variance. Confirmatory factor analysis also indicated that the model provided a good fit for the data. The Cronbach's α coefficient of the scale was 0.910, with Cronbach's α coefficients of 0.835 and 0.912 for the perceived discrimination and perceived rejection, respectively. The split-half reliability of the scale was 0.803, and the test-retest reliability was 0.920. ConclusionThe Chinese version of CIRDS has excellent reliability and validity, which can be used to evaluate the perceived discrimination in maintenance hemodialysis patients.
10.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.


Result Analysis
Print
Save
E-mail