1.A novel homozygous splicing mutation in AK7 causes multiple morphological abnormalities of sperm flagella in patients from consanguineous Pakistani families.
Ansar HUSSAIN ; Huan ZHANG ; Muhammad ZUBAIR ; Wasim SHAH ; Khalid KHAN ; Imtiaz ALI ; Yousaf RAZA ; Aurang ZEB ; Tanveer ABBAS ; Nisar AHMED ; Fazal RAHIM ; Ghulam MUSTAFA ; Meftah UDDIN ; Nadeem ULLAH ; Musavir ABBAS ; Muzammil Ahmad KHAN ; Hui MA ; Bo YANG ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(2):189-195
Multiple morphological abnormalities of the flagella (MMAF) represent a severe form of sperm defects leading to asthenozoospermia and male infertility. In this study, we identified a novel homozygous splicing mutation (c.871-4 ACA>A) in the adenylate kinase 7 (AK7) gene by whole-exome sequencing in infertile individuals. Spermatozoa from affected individuals exhibited typical MMAF characteristics, including coiled, bent, short, absent, and irregular flagella. Transmission electron microscopy analysis showed disorganized axonemal structure and abnormal mitochondrial sheets in sperm flagella. Immunofluorescence staining confirmed the absence of AK7 protein from the patients' spermatozoa, validating the pathogenic nature of the mutation. This study provides direct evidence linking the AK7 gene to MMAF-associated asthenozoospermia in humans, expanding the mutational spectrum of AK7 and enhancing our understanding of the genetic basis of male infertility.
Humans
;
Male
;
Sperm Tail/ultrastructure*
;
Homozygote
;
Consanguinity
;
Asthenozoospermia/pathology*
;
Infertility, Male/genetics*
;
Mutation
;
Pakistan
;
Adenylate Kinase/genetics*
;
Adult
;
Pedigree
;
RNA Splicing
;
Exome Sequencing
;
Spermatozoa
2.Novel homozygous SPAG17 variants cause human male infertility through multiple morphological abnormalities of spermatozoal flagella related to axonemal microtubule doublets.
Tao LIU ; Fazal RAHIM ; Meng-Lei YANG ; Meftah UDDIN ; Jing-Wei YE ; Imtiaz ALI ; Yousaf RAZA ; Abu MANSOOR ; Muhammad SHOAIB ; Mujahid HUSSAIN ; Ihsan KHAN ; Basit SHAH ; Asad KHAN ; Ahmad NISAR ; Hui MA ; Bo XU ; Wasim SHAH ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(2):245-253
Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 ( SPAG17 ) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility. This study investigated two novel homozygous SPAG17 mutations (M1: NM_206996.2, c.829+1G>T, p.Asp212_Glu276del; and M2: c.2120del, p.Leu707*) identified in four infertile patients from two consanguineous Pakistani families. These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa. Quantitative real-time polymerase chain reaction (PCR) of patients' spermatozoa also revealed a significant decrease in SPAG17 mRNA expression, and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella. However, no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients. Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls. Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17 (SPATA17), a component of the C1a projection, and sperm-associated antigen 6 (SPAG6), a marker of the spring layer, revealed disrupted expression of both proteins in the patients' spermatozoa. Altogether, these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme, expanding the phenotypic spectrum of SPAG17 mutations in humans.
Humans
;
Male
;
Infertility, Male/pathology*
;
Sperm Tail/ultrastructure*
;
Homozygote
;
Microtubule-Associated Proteins/genetics*
;
Axoneme/genetics*
;
Spermatozoa/ultrastructure*
;
Adult
;
Mutation
;
Sperm Motility/genetics*
;
Pedigree
;
Microtubules
;
Microtubule Proteins/genetics*
3.A novel frameshift variant in AXDND1 may cause multiple morphological abnormalities of the sperm flagella in a consanguineous Pakistani family.
Imtiaz ALI ; Meng-Lei YANG ; Fazal RAHIM ; Haider ALI ; Aurang ZEB ; Nisar AHMAD ; Yousaf RAZA ; Wang YUE ; Muhammad SHOAIB ; Tanveer ABBAS ; Wasim SHAH ; Hui MA ; Huan ZHANG ; Hao YIN ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(6):691-696
The syndrome of multiple morphological abnormalities of the sperm flagella (MMAF) is one of the most serious kinds of sperm defects, leading to asthenoteratozoospermia and male infertility. In this study, we use whole-exome sequencing to identify genetic factors that account for male infertility in a patient born from a consanguineous Pakistani couple. A homozygous frameshift mutation (c.1399_1402del; p.Gln468ArgfsTer2) in axonemal dynein light chain domain containing 1 ( AXDND1 ) was identified in the patient. Sanger sequencing data showed that the mutation was cosegregated recessively with male infertility in this family. Papanicolaou staining and scanning electron microscopy analysis of the sperm revealed severely abnormal flagellar morphology in the patient. Immunofluorescence and western blot showed undetectable AXDND1 expression in the sperm of the patient. Transmission electron microscopy analysis showed disorganized sperm axonemal structure in the patient, particularly missing the central pair of microtubules. Immunofluorescence staining showed the absence of sperm-associated antigen 6 (SPAG6) and dynein axonemal light intermediate chain 1 (DNALI1) signals in the sperm flagella of the patient. These findings indicate that AXDND1 is essential for the organization of flagellar axoneme and provide direct evidence that AXDND1 is a MMAF gene in humans, thus expanding the phenotypic spectrum of AXDND1 frameshift mutations.
Humans
;
Male
;
Sperm Tail/ultrastructure*
;
Frameshift Mutation
;
Infertility, Male/pathology*
;
Pakistan
;
Pedigree
;
Consanguinity
;
Axonemal Dyneins/genetics*
;
Adult
;
Spermatozoa
;
Exome Sequencing
4.A novel missense mutation of CCDC34 causes male infertility with oligoasthenoteratozoospermia in a consanguineous Pakistani family.
Nisar AHMAD ; Meng-Lei YANG ; Aurang ZEB ; Jian-Teng ZHOU ; Muhammad ZUBAIR ; Tanveer ABBAS ; Xiao-Hua JIANG ; Yuan-Wei ZHANG ; Huan ZHANG ; Wasim SHAH ; Qing-Hua SHI
Asian Journal of Andrology 2024;26(6):605-609
Male infertility is a worldwide health issue, affecting 8%-12% of the global population. Oligoasthenoteratozoospermia (OAT) represents a severe type of male infertility, characterized by reduced sperm count and motility and an increased frequency of sperm with aberrant morphology. Using whole-exome sequencing, this study identified a novel missense mutation (c.848C>A, p.A283E) in the coiled-coil domain-containing 34 gene (CCDC34) in a consanguineous Pakistani family. This rare mutation was predicted to be deleterious and to affect the protein stability. Hematoxylin and eosin staining of spermatozoa from the patient with OAT revealed multiple morphological abnormalities of the flagella and transmission electron microscopy indicated axonemal ultrastructural defects with a lack of outer dynein arms. These findings indicated that CCDC34 plays a role in maintaining the axonemal ultrastructure and the assembly or stability of the outer dynein arms, thus expanding the phenotypic spectrum of CCDC34 missense mutations.
Humans
;
Male
;
Mutation, Missense/genetics*
;
Pakistan
;
Consanguinity
;
Asthenozoospermia/genetics*
;
Pedigree
;
Infertility, Male/genetics*
;
Adult
;
Oligospermia/genetics*
;
Exome Sequencing
;
Axoneme/ultrastructure*
;
Spermatozoa/ultrastructure*
5.A recurrent homozygous missense mutation in CCDC103 causes asthenoteratozoospermia due to disorganized dynein arms.
Muhammad ZUBAIR ; Ranjha KHAN ; Ao MA ; Uzma HAMEED ; Mazhar KHAN ; Tanveer ABBAS ; Riaz AHMAD ; Jian-Teng ZHOU ; Wasim SHAH ; Ansar HUSSAIN ; Nisar AHMED ; Ihsan KHAN ; Khalid KHAN ; Yuan-Wei ZHANG ; Huan ZHANG ; Li-Min WU ; Qing-Hua SHI
Asian Journal of Andrology 2022;24(3):255-259
Asthenoteratozoospermia is one of the most severe types of qualitative sperm defects. Most cases are due to mutations in genes encoding the components of sperm flagella, which have an ultrastructure similar to that of motile cilia. Coiled-coil domain containing 103 (CCDC103) is an outer dynein arm assembly factor, and pathogenic variants of CCDC103 cause primary ciliary dyskinesia (PCD). However, whether CCDC103 pathogenic variants cause severe asthenoteratozoospermia has yet to be determined. Whole-exome sequencing (WES) was performed for two individuals with nonsyndromic asthenoteratozoospermia in a consanguineous family. A homozygous CCDC103 variant segregating recessively with an infertility phenotype was identified (ENST00000035776.2, c.461A>C, p.His154Pro). CCDC103 p.His154Pro was previously reported as a high prevalence mutation causing PCD, though the reproductive phenotype of these PCD individuals is unknown. Transmission electron microscopy (TEM) of affected individuals' spermatozoa showed that the mid-piece was severely damaged with disorganized dynein arms, similar to the abnormal ultrastructure of respiratory ciliary of PCD individuals with the same mutation. Thus, our findings expand the phenotype spectrum of CCDC103 p.His154Pro as a novel pathogenic gene for nonsyndromic asthenospermia.
Asthenozoospermia/pathology*
;
Dyneins/genetics*
;
Homozygote
;
Humans
;
Male
;
Microtubule-Associated Proteins
;
Mutation
;
Mutation, Missense
;
Sperm Tail/metabolism*
6.Molecular occurrence of canine babesiosis in rural dog population in Pakistan
Abdullah Sagir Ahmad ; Imran Rashid ; Kamran Ashraf ; Wasim Shehzad ; Matiullah Khan ; Kashif Hussain ; Shahid Hussain Farooqi ; Amjad Khan ; Muhammad Luqman Sohail
Tropical Biomedicine 2018;35(3):593-603
Canine babesiosis is an important tick-borne protozoal disease of dogs that poses major health problem worldwide. Farm dogs in rural areas are the companion animals, that not only watch the livestock herds but also guard the house of the owners. Each farmer keeps his companion dog to get all the services. In our study, a total of 450 blood samples of farm dogs from three different ecological zones (Southern, Central and Northern regions of the province; Punjab) of Pakistan, were collected to examine through microscopy and PCR. Examination of thin blood smears revealed an overall prevalence of 12.8% (58/450) of canine babesisal parasites. However, PCR analysis revealed 46.8% (211/450) and 7.3% (33/450) samples positive for B. gibsoni and B. vogeli, respectively. The amplicons of 671 bp and 590 bp were amplified for the detection of B. gibsoni and B. vogeli, respectively through PCR. The results of multivariate analysis showed that the occurrence of canine babesiosis is higher in the Central Punjab and younger age of the dogs, while breed and sex of the host were not significantly associated with the occurrence of the disease. Mixed infection of B. gibsoni and B. vogeli was observed only in 3 dogs each in district Kasur and Rawalpindi. Our study is the first report to observe the occurrence of canine babesiosis in rural dogs in Pakistan through PCR.
7.Homozygous mutations in NTRK1 gene underlie congenital insensitivity to pain with anhidrosis in Pakistani families
Humaira Aziz Sawal ; Muhammad Ikram Ullah ; Arsalan Ahmad ; Abdul Nasir ; Ali Amar ; Ejaz A. Khan ; Mamoon Rashid ; Saqib Mahmood ; Peter John ; Wasim Ahmad ; Christian A. Hübner ; Muhammad Jawad Hassan
Neurology Asia 2016;21(2):129-136
Congenital insensitivity to pain with anhidrosis is a rare autosomal recessive disorder presenting
with loss of pain sensation, thermal sensation defects, and self-mutilating behavior. In the present
study, we recruited two consanguineous pedigree showing pain insensitivity symptoms from Pakistan
for clinical and molecular investigations. In family A, one female patient displayed classical CIPA
symptoms along with microcephaly and severe intellectual disability. During course of the disease,
her right foot was amputated and had remarkable dental degeneration and teeth shedding. In family B,
one boy presented with classical symptoms of congenital insensitivity to pain with anhidrosis. Blood
was collected from both families for molecular studies. Sequencing with the Ilumina Trusight One
Sequencing Panel covering 4813 OMIM genes revealed a known homozygous mutation c.2084C>T;
p.P695L of NTRK1 in family A and a novel truncated mutation c.2025C>G; p.Y681X in family B.
Protein modeling analysis of both mutations (p.P695L and p.Y681X) predicted loss of the rigidity in
tyrosine kinase domain of NTRK1 that led to conformational changes as well as deleterious effect on
protein function. The known mutation was reported more than a decade ago in a family from Northern
Israel and other non-sense mutation is newly identified. It is interested that most of NTRK1 mutations
are associated with this domain. This is first ever report of NTRK1 variants in congenital insensitivity
to pain with anhidrosis patients from Pakistan.
Pain Insensitivity, Congenital


Result Analysis
Print
Save
E-mail