1.Qishao Capsules Improve Diabetic Renal Injury in db/db Mice by Inhibiting Podocyte Apoptosis via Regulating Caspase-8 and Caspase-3
Jingwei LIU ; Zhenhua WU ; Bing YANG ; Fengwen YANG ; Miao TAN ; Tingting LI ; Jinchuan TAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):126-135
ObjectiveTo observe the effect of Qishao capsules on renal injury in db/db mice with diabetic kidney disease (DKD),and explore its mechanism of protecting the kidney by inhibiting podocyte apoptosis. Methodsdb/m mice (7 mice) were used as the normal group,and db/db mice (35 mice) were randomly divided into a model group,a dapagliflozin group (0.001 g·kg-1·d-1),and low-,medium-,and high-dose groups of Qishao capsules (0.341 3,0.682 5,and 1.365 g·kg-1·d-1,respectively). Drug intervention lasted for 8 consecutive weeks. After sampling,the serum renal function indicators [creatinine(SCr),and urea nitrogen(BUN)],fasting blood glucose (FBG),24 h urinary protein quantification (24 h-UTP), and other indicators of the mice were measured. The pathological tissue morphology of the kidney was observed by periodic acid-silver methenamine (PASM) and Masson's trichrome (Masson) staining. Immunohistochemical detection of cysteine-dependent aspartate-specific protease (Caspase)-3 and B-cell lymphoma 2 (Bcl-2) was performed. Western blot was used to detect the protein expression of Caspase-8,Caspase-7,Caspase-3, and other molecules. Terminal deoxynucleotidyl transferase dUTP nick End labeling (TUNEL) staining was used to observe apoptosis in renal tissue. Immunofluorescence staining of Wilms tumor suppressor gene-1
2.Joint Relation Extraction of Famous Medical Cases with CasRel Model Combining Entity Mapping and Data Augmentation
Yuxin LI ; Xinghua XIANG ; Hang YANG ; Dasheng LIU ; Jiaheng WANG ; Zhiwei ZHAO ; Jiaxu HAN ; Mengjie WU ; Qianzi CHE ; Wei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):218-225
ObjectiveTo address the challenges of unstructured classical Chinese expressions, nested entity relationships, and limited annotated data in famous traditional Chinese medicine(TCM) case records, this study proposes a joint relation extraction framework that integrates data augmentation and entity mapping, aiming to support the construction of TCM diagnostic knowledge graphs and clinical pattern mining. MethodsWe developed an annotation structure for entities and their relationships in TCM case texts and applied a data augmentation strategy by incorporating multiple ancient texts to expand the relation extraction dataset. A cascade binary tagging framework for relation triple extraction(CasRel) model for TCM semantics was designed, integrating a pre-trained bidirectional encoder representations from transformers(BERT) layer for classical TCM texts to enhance semantic representation, and using a head entity-relation-tail entity mapping mechanism to address entity nesting and relation overlapping issues. ResultsExperimental results showed that the CasRel model, combining data augmentation and entity mapping, outperformed the pipeline-based Bert-Radical-Lexicon(BRL)-bidirectional long short-term memory(BiLSTM)-Attention model. The overall precision, recall, and F1-score across 12 relation types reached 65.73%, 64.03%, and 64.87%, which represent improvements of 14.26%, 7.98%, and 11.21% compared to the BRL-BiLSTM-Attention model, respectively. Notably, the F1-score for tongue syndrome relations increased by 22.68%(69.32%), and the prescription-syndrome relations performed the best with the F1-score of 70.10%. ConclusionThe proposed framework significantly improves the semantic representation and complex dependencies in TCM texts, offering a reusable technical framework for structured mining of TCM case records. The constructed knowledge graph can support clinical syndrome differentiation, prescription optimization, and drug compatibility, providing a methodological reference for TCM artificial intelligence research.
3.Combined Therapy of Traditional Chinese and Western Medicine for Hepatitis B Virus Infection: A Review
Xuan WU ; Hui LI ; Jian HUANG ; Xikun YANG ; Yan ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):279-288
Hepatitis B virus (HBV) infection is the primary cause of viral hepatitis and represents a substantial disease burden in China. However, effective and safe agents capable of completely eliminating HBV DNA are still lacking. In modern medicine, anti-HBV strategies mainly target covalently closed circular DNA (cccDNA), among other mechanisms, and multiple novel drugs are currently under clinical investigation. Traditional medicine has been shown to exert anti-HBV effects through direct pathways, such as blocking viral entry, as well as indirect pathways, including the regulation of programmed cell death. Studies have confirmed that the integration of traditional Chinese medicine (TCM) and Western medicine in treating HBV infection and its related complications offers complementary advantages, particularly in enhancing HBV clearance rates, improving liver function, preventing various complications, and delaying the progression from hepatic fibrosis to hepatocellular carcinoma. This review focuses on advances in anti-HBV research involving TCM, Western medicine, and their integrated application, aiming to provide a basis for integrated HBV therapy and new drug development.
4.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
5.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
6.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
7.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
8.Shentong Zhuyutang Regulates SIRT1/Nrf2 Pathway to Ameliorate Intervertebral Disc Degeneration in Rats
Jiajun HUANG ; Diyou WU ; Guangyi TAO ; Yu ZHAO ; Junqing HUANG ; Bin YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):29-39
ObjectiveTo study the effect and mechanism of Shentong Zhuyutang in treating intervertebral disc degeneration (IDD) in rats. MethodsIn the cell experiment, male rats were administrated with normal saline or low-, medium-, and high-dose (3.38, 6.75,13.5 g·kg-1, respectively) Shentong Zhuyutang by gavage, respectively, and serum samples were collected after 7 days of continuous administration. Another 10 male rats were selected for the isolation of nucleus pulposus cells. The cell model of IDD was established by treatment with interleukin (IL)-1β. The modeled cells were then treated with Shentong Zhuyutang-containing serum and the ferroptosis inhibitor ferrostatin-1 (Fer-1), respectively, to investigate the effects of Shentong Zhuyutang-containing serum on the proliferation and ferroptosis of nucleus pulposus cells. To study the role of silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) in the regulation of ferroptosis in nucleus pulposus cells by Shentong Zhuyutang-containing serum, this study treated the cells with the SIRT1 inhibitor Ex 527 and the Nrf2 inhibitor ML385, respectively, in addition to the treatment with IL-1β and high-dose Shentong Zhuyutang-containing serum. The cell-counting kit-8 (CCK-8) assay and EdU staining were employed to measure the cell viability and proliferation, respectively. The Fe2+, glutathione (GSH), and malondiadehyde (MDA) levels were measured by colorimetric assay. Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family 4 (ACSL4), Collagen Ⅱ, Aggrecan, SIRT1, and Nrf2. Immunofluorescence was used detect SIRT1 expression. In the animal experiment, male rats were treated with anulus puncture for the modeling of IDD. Rats were randomly assigned into sham operation, model, Shentong Zhuyutang-containing serum (13.5 g·kg-1), and positive control (nimesulide dispersible tablets, 0.18 mg·kg-1) groups. Rats in the drug intervention groups were administrated with corresponding agents at 1 mL·kg-1, and those in the sham operation and model groups were administrated with equal volumes of normal saline, once daily for 28 consecutive days. At the end of the last administration, the histopathological changes in the intervertebral discs of rats were observed by hematoxylin-eosin staining and scored by the Masuda method. Western blot was employed to determine the protein levels of SIRT1, Nrf2, GPX4, and Collagen Ⅱ in the nucleus pulposus tissue. ResultsCompared with the control group, the IL-1β group of nucleus pulposus cells showed elevated levels of Fe2+, MDA, and ACSL4 (P<0.05), decreased cell viability, lowered GSH level, and down-regulated protein levels of GPX4, Collagen Ⅱ, and Aggrecan (P<0.05). Shentong Zhuyutang-containing serum and Fer-1 reversed the effects of IL-1β on the viability and ferroptosis of nucleus pulposus cells and up-regulated the protein levels of Collagen Ⅱ and Aggrecan in nucleus pulposus cells (P<0.05). Compared with the control group, the IL-1β group showcased down-regulated expression of Sirt1 and Nrf2 in nucleus pulposus cells (P<0.05). Compared with the IL-1β group, the high-dose Shentong Zhuyutang-containing serum+IL-1β group showed up-regulated expression of SIRT1 and Nrf2 in nucleus pulposus cells (P<0.05). Compared with the high-dose Shentong Zhuyutang-containing serum+IL-1β group, the ML385 group showed down-regulated protein levels of Nrf2 and GPX4, lowered GSH level, and elevated Fe2+ and MDA levels (P<0.05). In addition, the Ex 527 group showed down-regulated protein levels of SIRT1, Nrf2, and GPX4 (P<0.05). The results of the animal experiment showed that compared with the sham operation group, the model group had severe degeneration of the intervertebral disc tissue with increased pathological score, up-regulated protein level of ACSL4 (P<0.05), and down-regulated protein levels of SIRT1, Nrf2, GPX4, and Collagen Ⅱ (P<0.05). Compared with the model group, the Shentong Zhuyutang group showed alleviated IDD with declined pathological score, down-regulated protein level of ACSL4 (P<0.05), and up-regulated protein levels of SIRT1, Nrf2, GPX4, and Collagen Ⅱ (P<0.05). ConclusionShentong Zhuyutang may activate the SIRT1/Nrf2 signaling pathway to inhibit the ferroptosis of nucleus pulposus cells, thereby delaying the process of IDD in rats.
9.Cordycepin Inhibits Fat Infiltration after Rotator Cuff Tear Injury by Regulating Wnt/β-catenin Signaling Pathway
Qiu'en XIE ; Dengwen LIANG ; Shao WU ; Xuhui HAO ; Liguang LIANG ; Bangxiang JIAN ; Junhong DONG ; Lei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):98-106
ObjectiveTo investigate the effect and mechanism of cordycepin in inhibiting fat infiltration after rotator cuff injuries in rats by regulating the Wnt/β-catenin signaling pathway, providing a theoretical basis for clinical treatment of rotator cuff injuries. MethodsFifty SPF-grade female SD rats were used in this study, with 10 randomly selected as the blank group. A rotator cuff injury repair model was established by supraspinatus tendon and suprascapular nerve compression. The successfully modeled rats were randomized into model and low-dose (20 mg·kg-1), medium-dose (40 mg·kg-1), and high-dose (80 mg·kg-1) cordycepin groups. After 6 weeks of treatment, the gait analysis was performed to assess the limb function in rats. Oil red O staining and Masson staining were employed to observe pathological changes in the muscle tissue. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the serum. Immunohistochemistry (IHC) was employed to detect the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are markers of adipogenesis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of Wnt3a, Wnt10b, and β-catenin. ResultsCompared with the blank group, the model group showed decreases in stride length and paw print area (P<0.01), an increase in ratio of wet muscle mass reduction and a decrease in muscle fiber cross-sectional area (P<0.05), and decreased ratios of fat infiltration area and collagen fiber area (P<0.01). Additionally, the model group showed elevated levels of IL-1β, IL-6, and TNF-α (P<0.05), up-regulated protein levels of PPARγ and C/EBPα (P<0.01), and down-regulated mRNA and protein levels of Wnt3a, Wnt10b, and β-catenin (P<0.05, P<0.01). Compared with the model group, the low-, medium-, and high-dose cordycepin groups showed increases in stride length and paw print area (P<0.01), a decrease in ratio of wet muscle mass reduction and an increase in muscle fiber cross-sectional area (P<0.05), and increases in ratios of fat infiltration area and collagen fiber area (P<0.05, P<0.01). In addition, cordycepin lowered the serum levels of IL-1β, IL-6, and TNF-α (P<0.05, P<0.01), down-regulated the protein levels of PPARγ and C/EBPα (P<0.01), and up-regulated the mRNA and protein levels of Wnt3a, Wnt10b, and β-catenin (P<0.05, P<0.01). ConclusionCordycepin can improve the limb function, alleviate rotator cuff muscle atrophy, fat infiltration, and fibrosis, and inhibit inflammation in rats by regulating the Wnt/β-catenin signaling pathway.
10.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.

Result Analysis
Print
Save
E-mail