1.Improving the Certainty of Evidence in Animal Experiment Systematic Review/Meta-Analysis: An Empirical Study of the GRADE Method
Tengfei LI ; Qingyong ZHENG ; Jianguo XU ; Yiyi LI ; Yongjia ZHOU ; Caihua XU ; Mingyue ZHANG ; Jiexiang TIAN ; Gang WANG ; Jinhui TIAN
Laboratory Animal and Comparative Medicine 2025;45(1):101-111
Animal experiments are essential tools in biomedical research, serving as a bridge between basic research and clinical trials. Systematic reviews and meta-analyses (SRs/MAs) of animal experiments are crucial methods for integrating evidence from animal experiment, which can facilitate the translation of findings into clinical research, reduce translational risks, and promote resource integration in basic research. With the continuous development of the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology, its application in SRs/MAs of animal experiments has gained increasing attention. This article first outlines the principles and specific applications of the GRADE methodology in SRs/MAs of animal experiments, including qualitative descriptive systematic reviews, meta-analyses, and network meta-analyses. It then deeply analyzes the misuse of the GRADE methodology in practice, including incorrect evidence grading, improper classification of evidence, misapplication in qualitative systematic reviews, inconsistencies between the documentation of the upgrading and downgrading process and results, and inappropriate use for making recommendations. Furthermore, this article comprehensively discusses the factors influencing the grading of evidence certainty in SRs/MAs of animal experiments, including the impact of bias risk, indirectness, inconsistency, imprecision, and publication bias on evidence downgrading, as well as the role of large effect sizes and cross-species consistency in evidence upgrading. Finally, in response to the issues discussed, improvement strategies are proposed, including further research and optimization of the GRADE methodology for SRs/MAs of animal experiments, the development of reporting guidelines tailored to the characteristics of SRs/MAs in animal experiment research, and enhanced professional training for researchers in the GRADE methodology. This article aims to improve the quality of evidence in SRs/MAs of animal experiments, strengthen their reliability in clinical decision-making, and promote the more efficient translation of findings from animal experiment research into clinical practice.
2.Correlation between serum homocysteine, folic acid and sperm DNA fragmentation index
LE Yun ; ZHU Yurong ; ZHU Mengyi ; WANG Tengfei ; SHAO Shengsheng ; CHEN Xiaojun ; YANG Sheng
Journal of Preventive Medicine 2025;37(4):400-403
Objective:
To analyze the correlation between serum homocysteine (Hcy) and both folic acid (FA) and sperm DNA fragmentation index (DFI), so as to provide the evidence for male fertility assessment.
Methods:
Males who visited and measured the serum Hcy in the Reproductive Medicine Center of Huzhou Maternal and Child Health Care Hospital from September 2022 to September 2023 were selected as the study subjects. Sperm quality parameters and sperm DFI were analyzed by collecting sperm. Hcy and FA were measured by collecting venous blood. Participants were stratified into a high Hcy group (Hcy≥15.0 μmol/L) and a normal group (Hcy<15.0 μmol/L). The correlations between serum Hcy and FA and sperm DFI were evaluated using linear regression models.
Results:
A total of 173 participants were enrolled, including 39 in the high Hcy group and 134 in the normal group. The sperm concentration in the high Hcy group was significantly lower than that in the normal group [(91.77±61.11)×106/mL vs. (144.21±106.82)×106/mL, P<0.05]. No statistically significant differences were observed in semen volume, sperm motility, curvilinear velocity, straight-line velocity, average path velocity, or sperm morphology normal rate (all P>0.05). The FA level in the high Hcy group was lower than that in the normal group [(4.44±1.79) nmol/L vs. (7.64±3.68) nmol/L, P<0.05]. The sperm DFI in the high Hcy group was higher than that in the normal group [(19.21±8.85)% vs. (13.07±6.43)%, P<0.05]. Serum Hcy level showed a negative correlation with FA level (r=-0.369, P<0.05) and a positive correlation with sperm DFI (r=0.351, P<0.05).
Conclusion
Serum Hcy level is associated with sperm concentration, FA and sperm DFI, suggesting that serum Hcy may affect sperm quality.
3.Research progress on platelets in glioma.
Mingrong ZUO ; Tengfei LI ; Zhihao WANG ; Yufan XIANG ; Siliang CHEN ; Yanhui LIU
Chinese Medical Journal 2025;138(1):28-37
Gliomas are the most common primary neuroepithelial tumors of the central nervous system in adults, of which glioblastoma is the deadliest subtype. Apart from the intrinsically indestructible characteristics of glioma (stem) cells, accumulating evidence suggests that the tumor microenvironment also plays a vital role in the refractoriness of glioblastoma. The primary functions of platelets are to stop bleeding and regulate thrombosis under physiological conditions. Furthermore, platelets are also active elements that participate in a variety of processes of tumor development, including tumor growth, invasion, and chemoresistance. Glioma cells recruit and activate resting platelets to become tumor-educated platelets (TEPs), which in turn can promote the proliferation, invasion, stemness, and chemoresistance of glioma cells. TEPs can be used to obtain genetic information about gliomas, which is helpful for early diagnosis and monitoring of therapeutic effects. Platelet membranes are intriguing biomimetic materials for developing efficacious drug carriers to enhance antiglioma activity. Herein, we review the recent research referring to the contribution of platelets to the malignant characteristics of gliomas and focusing on the molecular mechanisms mediating the interaction between TEPs and glioma (stem) cells, as well as present the challenges and opportunities in targeting platelets for glioma therapy.
Humans
;
Glioma/metabolism*
;
Blood Platelets/physiology*
;
Brain Neoplasms/pathology*
;
Tumor Microenvironment
4.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
5.Collagen-based micro/nanogel delivery systems: Manufacturing, release mechanisms, and biomedical applications.
Bowei DU ; Shuhan FENG ; Jiajun WANG ; Keyi CAO ; Zhiheng SHI ; Cuicui MEN ; Tengfei YU ; Shiqi WANG ; Yaqin HUANG
Chinese Medical Journal 2025;138(10):1135-1152
Collagen-based materials, renowned for their biocompatibility and minimal immunogenicity, serve as exemplary substrates in a myriad of biomedical applications. Collagen-based micro/nanogels, in particular, are valued for their increased surface area, tunable degradation rates, and ability to facilitate targeted drug delivery, making them instrumental in advanced therapeutics and tissue engineering endeavors. Although extensive reviews on micro/nanogels exist, they tend to cover a wide range of biomaterials and lack a specific focus on collagen-based materials. The current review offers an in-depth look into the manufacturing technologies, drug release mechanisms, and biomedical applications of collagen-based micro/nanogels to address this gap. First, we provide an overview of the synthetic strategies that allow the precise control of the size, shape, and mechanical strength of these collagen-based micro/nanogels by controlling the degree of cross-linking of the materials. These properties are crucial for their performance in biomedical applications. We then highlight the environmental responsiveness of these collagen-based micro/nanogels, particularly their sensitivity to enzymes and pH, which enables controlled drug release under various pathological conditions. The discussion then expands to include their applications in cancer therapy, antimicrobial treatments, bone tissue repair, and imaging diagnosis, emphasizing their versatility and potential in these critical areas. The challenges and future perspectives of collagen-based micro/nanogels in the field are discussed at the end of the review, with an emphasis on the translation to clinical practice. This comprehensive review serves as a valuable resource for researchers, clinicians, and scientists alike, providing insights into the current state and future directions of collagen-based micro/nanogel research and development.
Collagen/chemistry*
;
Drug Delivery Systems/methods*
;
Humans
;
Tissue Engineering/methods*
;
Animals
;
Biocompatible Materials/chemistry*
6.Chemical knockdown of Keap1 and homoPROTAC-ing allergic rhinitis.
Jianyu YAN ; Tianyu WANG ; Ruizhi YU ; Lijuan XU ; Hongming SHAO ; Tengfei LI ; Zhe WANG ; Xudong CHA ; Zhenyuan MIAO ; Chengguo XING ; Ke XU ; Huanhai LIU ; Chunlin ZHUANG
Acta Pharmaceutica Sinica B 2025;15(8):4137-4155
Allergic rhinitis (AR), a globally prevalent immune-mediated inflammatory condition, is still an incurable disease. In the present study, we have validated the impact of the Kelch-like ECH associated protein 1 (Keap1)-related oxidative stress and inflammatory response in clinical AR patient peripheral blood and nasal swab samples, emphasizing the biological relevance of Keap1 and AR. Targeting Keap1 -nuclear factor erythroid 2-related factor 2 (Nrf2) related anti-oxidative stress may be effective for AR intervention. Drawing inspiration from the Keap1 homodimerization and the E3 ligase characteristics, we herein present a design of novel bivalent molecules for chemical knockdown of Keap1. For the first time, we characterized ternary complexes of Keap1 dimer and one molecule of bivalent compounds. The best bivalent molecule 8 encompasses robust capacity to degrade Keap1 as a homoPROTACKEAP1. It efficaciously suppresses inflammatory cytokines in extensively different cells, including human nasal epithelial cells. Moreover, in an AR mouse model, we confirmed that the chemical degradation induced by homoPROTACKEAP1 led to therapeutic benefits in managing AR symptoms, oxidative stress and inflammation. In summary, our findings underscore the efficacy of targeting the Keap1 system through the homoPROTAC-ing technology as an innovative and promising treatment strategy for the incurable allergic disorders.
7.Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract.
Rui XU ; Hengyuan YU ; Yichen WANG ; Boyu LI ; Yong CHEN ; Xuesong LIU ; Tengfei XU
Journal of Pharmaceutical Analysis 2025;15(2):101101-101101
Natural products (NPs) have historically been a fundamental source for drug discovery. Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents, and corresponding targets. In the present study, an innovative natural product virtual screening-interaction-phenotype (NP-VIP) strategy that integrates virtual screening, chemical proteomics, and metabolomics to identify and validate the bioactive targets of NPs. This approach reduces false positive results and enhances the efficiency of target identification. Salvia miltiorrhiza (SM), a herb with recognized therapeutic potential against ischemic stroke (IS), was used to illustrate the workflow. Utilizing virtual screening, chemical proteomics, and metabolomics, potential therapeutic targets for SM in the IS treatment were identified, totaling 29, 100, and 78, respectively. Further analysis via the NP-VIP strategy highlighted five high-confidence targets, including poly [ADP-ribose] polymerase 1 (PARP1), signal transducer and activator of transcription 3 (STAT3), amyloid precursor protein (APP), glutamate-ammonia ligase (GLUL), and glutamate decarboxylase 67 (GAD67). These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM. The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research, proposing a comprehensive approach that could be adapted for broader pharmacological explorations.
8.Oncogene goosecoid is transcriptionally regulated by E2F1 and correlates with disease progression in prostate cancer
Yue GE ; Sheng MA ; Qiang ZHOU ; Zezhong XIONG ; Yanan WANG ; Le LI ; Zheng CHAO ; Junbiao ZHANG ; Tengfei LI ; Zixi WU ; Yuan GAO ; Guanyu QU ; Zirui XI ; Bo LIU ; Xi WU ; Zhihua WANG
Chinese Medical Journal 2024;137(15):1844-1856
Background::Although some well-established oncogenes are involved in cancer initiation and progression such as prostate cancer (PCa), the long tail of cancer genes remains to be defined. Goosecoid ( GSC) has been implicated in cancer development. However, the comprehensive biological role of GSC in pan-cancer, specifically in PCa, remains unexplored. The aim of this study was to investigate the role of GSC in PCa development. Methods::We performed a systematic bioinformatics exploration of GSC using datasets from The Cancer Genome Atlas, Genotype-Tissue Expression, Gene Expression Omnibus, German Cancer Research Center, and our in-house cohorts. First, we evaluated the expression of GSC and its association with patient prognosis, and identified GSC-relevant genetic alterations in cancers. Further, we focused on the clinical characterization and prognostic analysis of GSC in PCa. To understand the transcriptional regulation of GSC by E2F transcription factor 1 ( E2F1), we performed chromatin immunoprecipitation quantitative polymerase chain reaction (qPCR). Functional experiments were conducted to validate the effect of GSC on the tumor cellular phenotype and sensitivity to trametinib. Results::GSC expression was elevated in various tumors and significantly correlated with patient prognosis. The alterations of GSC contribute to the progression of various tumors especially in PCa. Patients with PCa and high GSC expression exhibited worse progression-free survival and biochemical recurrence outcomes. Further, GSC upregulation in patients with PCa was mostly accompanied with higher Gleason score, advanced tumor stage, lymph node metastasis, and elevated prostate-specific antigen (PSA) levels. Mechanistically, the transcription factor, E2F1, stimulates GSC by binding to its promoter region. Detailed experiments further demonstrated that GSC acted as an oncogene and influenced the response of PCa cells to trametinib treatment. Conclusions::GSC was highly overexpressed and strongly correlated with patient prognosis in PCa. We found that GSC, regulated by E2F1, acted as an oncogene and impeded the therapeutic efficacy of trametinib in PCa.
9.Inhibitory effect of D-limonene on proliferation of glioblastoma cells and its mechanism
Tengfei WANG ; Feng CHEN ; Ling QI ; Ting LEI ; Meihui SONG
Journal of Jilin University(Medicine Edition) 2024;50(3):647-657
Objective:To discuss the effect of D-limonene on the proliferation and apoptosis of the glioblastoma(GBM)cells,and to clarify its possible mechanism.Methods:The GBM cells were divided into control group(0 mmol·L-1 D-limonene)and 0.2,0.4,0.6,0.8,and 1.0 mmol·L-1 D-limonene groups.CCK-8 method was used to detect the inhibitory rates of proliferation of the cells in various groups;clone formation assay was used to detect the clone formation rates of the cells in various groups;Annexin Ⅴ-FITC/PI method was used to detect the apoptotic rates of the cells in various groups;Western blotting method was used to detect the expression levels of protein kinase B(AKT),B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax),and poly adenosine diphosphate(ADP)-ribose polymerase(PARP)proteins in the cells in various groups;imunofluorescence method was used to detect the expression levels of cleaved Caspase-3 protein in the cells in various groups.Fifteen model mice with subcutaneous tumor xenografts were randomly divided into blank group(0 mg·kg-1·d-1 D-limonene),low dose of D-limonene group(200 mg·kg-1·d-1 D-limonene),and high dose of D-limonene group(400 mg·kg-1·d-1 D-limonene),and there were 5 mice in each group.The inhibitory rates of the tumor in vitro in various groups were calculated;HE staining and immunohistochemical staining were used to observe the morphology of subcutaneous tumor tissue of the mice in various groups and the growth curves of the tumor were drawn;immunohistochemical assay was used to detect the positive expression rates of Ki67 protein in subcutaneous tumor tissue of the mice in various groups;TUNEL staining was used to detect the apoptosis of the tumor cells in various groups.Results:In control group,the cells were spindle-shaped,in good condition,growing closely and adherently,with normal organelles and cytoplasm.After treated for 48 h,the cells in 0.6 mmol·L-1 D-limonene group showed reduced volume,intact but more permeable cell membranes,shrunken cytoplasm,internal vacuole structures,and some fragments floating in the solution.The cells in 0.8 and 1.0 mmol·L-1 D-limonene groups exhibited significant apoptotic bodies and were in an apoptotic state.The CCK-8 results showed that compared with control group,the inhibitory rates of proliferation of the U87,LN229,and GL261 cells in 0.6,0.8,and 1.0 mmol·L-1 D-limonene groups were significantly increased(P<0.01),the inhibitory rates of proliferation of the U87 and GL261 cells were significantly increased(P<0.01).The clone formation assay results showed that compared with control group,the clone formation rates of the U87,LN229,and GL261 cells in 0.4,0.6,and 0.8 mmol·L-1 D-limonene groups were significantly decreased(P<0.05 or P<0.01).The AnnexinⅤ-FITC/PI results showed that compared with control group,after treated with D-limonene for 48 h,the apoptotic rates of the LN229 cells in 0.6,0.8,and 1.0 mmol·L-1 D-limonene groups were significantly increased(P<0.01).The Western blotting results showed that compared with control group,the expression levels of Bax proteins in the LN229 cells in 0.6,0.8,and 1.0 mmol·L-1 D-limonene groups were significantly increased(P<0.01),while the expression levels of AKT and Bcl-2 proteins were significantly decreased(P<0.01),the expression level of PARP protein in the LN229 cells in 0.8 and 1.0 mmol·L-1 D-limonene group was significanthy increased(P<0.01).The immunofluorescence results showed that compared with control group,the expression levels of cleaved Caspase-3 protein in the LN229 cells in 0.6,0.8,and 1.0 mmol·L-1 D-limonene groups were significantly increased(P<0.01).Compared with blank group,the tumor volumes of the mice in low and high doses of D-limonene groups were significantly decreased(P<0.01).Compared with blank group,the tumor weights of the mice in low and high doses of D-limonene groups were significantly decreased(P<0.05),and the inhitory rates of tumor were significantly increased(P<0.05).The tumor cells in blank group were diffusely distributed,with deepened nuclear staining and increased nucleocytoplasmic ratio;a large number of degenerated and necrotic tumor cells were observed in tumor tissue of the mice in low and high doses of D-limonene groups.Compared with blank group,the positive expression rates of Ki67 protein in tumor tissue of the mice in low and high doses of D-limonene groups were significantly decreased(P<0.01).Compared with blank group,the apoptotic rates of tumor cells of the mice in low and high doses of D-limonene groups were significantly increased(P<0.01).Conclusion:D-limonene has the inhibitory effect on the proliferation of the GBM cells;its mechanism may be related to the regulation of AKT protein expression and the activation of the Caspase-3 pathway to induce the apoptosis.
10.Application and accuracy assessment of a novel 3D-printed osteotomy guide in anterior maxillary segmental distraction osteogenesis
Teng WAN ; Tengfei JIANG ; Min ZHU ; Xudong WANG
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(1):43-49
Objective·To evaluate the effects of anterior maxillary segmental distraction osteogenesis(AMSDO)in treating sagittal maxillary hypoplasia in cleft lip and palate(CLP)patients and to report a 3D-printed surgical guide to facilitate the osteotomy.Methods·Twelve patients with CLP who underwent AMSDO were included in this study.Virtual osteotomy was performed in a 3-dimensional model and the osteotomy line were fabricated into a tooth-borne surgical guide by using 3D-printing technique.Lateral cephalograms taken before surgery(T0),at the end of consolidation(T1)and six months after consolidation(T2)were used to evaluate the effects of AMSDO.The accuracy of the osteotomy guide was measured by superimposing the postoperative CT data to virtual planning.Results·All the patients went through surgery without serious complications.SNA and overjet changed significantly both from T0 to T1 and from T0 to T2.ANB,facial convexity,and palatal length changed without significance from T0 to T1 and from T0 to T2.SNB remained stable.All the variables remained relatively stable from T1 to T2.The anteroposterior linear root-mean-square deviation(RMSD)between planning and actual results was 0.90 mm,while the angular RMSD in the sagittal plane was 5.07°.Conclusion·AMSDO is an effective treatment for maxillary hypoplasia secondary to CLP.The accuracy of this 3D-printed osteotomy guide is clinically acceptable,and this can simplify the surgery with fewer complications.


Result Analysis
Print
Save
E-mail