1.Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats
Lin ZHENG ; Wenjun JIN ; Shanshan LUO ; Rui HUANG ; Jie WANG ; Yuting CHENG ; Zheqing AN ; Yue XIONG ; Zipeng GONG ; Jian LIAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1159-1167
BACKGROUND:Eucommia ulmoides has a certain osteogenic effect,which can promote the proliferation and differentiation of osteoblasts.However,it is unclear whether Eucommia ulmoides has effects on alveolar bone formation and Wnt/β-Catenin signaling pathway. OBJECTIVE:To investigate the mechanism by which Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats based on the Wnt/β-Catenin signaling pathway. METHODS:Sixty female Sprague-Dawley rats were selected and randomly divided into five groups:blank control group,sham-operation group,model group,low-dose group Eucommia ulmoides group,and high-dose Eucommia ulmoides group,with twelve rats in each group.Osteoporosis animal models were constructed by bilateral oophorectomy in the model group and the low-dose and high-dose Eucommia ulmoides groups.The sham-operation group underwent the same method to remove adipose tissue of equal mass around the bilateral ovaries.Three months after surgery,the low-and high-dose Eucommia ulmoides groups were given 2.1 g/kg/d and 4.2 g/kg/d Eucommia ulmoides by gavage,respectively.The sham-operation group and model group were given the same amount of physiological saline by gavage.After 12 weeks of drug intervention,the changes in alveolar bone mass of rats in each group were observed through Micro-CT;hematoxylin-eosin staining was used to observe the pathological structural changes of alveolar bone in rats;enzyme linked immunosorbent assay was used to detect the expression levels of alkaline phosphatase and osteocalcin in the serum of rats;western blot was used to detect the expression levels of β-Catenin and Frizzled9 receptor proteins in the alveolar bone of rats;and real-time fluorescence quantitative PCR was used to detect the expression of osteocalcin,Runt-related transcription factor 2(Runx2),alkaline phosphatase,β-catenin,and frizzled9 mRNAs in alveolar bone tissues of rats. RESULTS AND CONCLUSION:Compared with the blank control group,bone volume fraction,trabecular number,trabecular thickness,and bone mineral density were reduced in the model group(P<0.05),and trabecular separation was elevated(P<0.05).Pathological observation showed that the arrangement of trabeculae was disordered and irregular,the trabeculae were thinned or broken,and the marrow cavity was enlarged in the model group,with a significant reduction in bone volume;the level of alkaline phosphatase in the serum was increased(P<0.05),and the level of osteocalcin was decreased(P<0.05);mRNA expression of alkaline phosphatase,osteocalcin,Runx2,β-catenin,and frizzled9 were decreased(P<0.05);protein expression of β-Catenin and Frizzled9 was decreased(P<0.05).Compared with the model group,the low-and high-dose Eucommia ulmoides groups showed an increase in bone volume fraction,trabecular number,trabecular thickness,and bone mineral density(P<0.05)and a decrease in trabecular separation(P<0.05).In the low-and high-dose Eucommia ulmoides groups,bone trabeculae were slightly aligned and thickened,with a significant increase in bone mass.Compared with the model group,the serum level of alkaline phosphatase was reduced(P<0.05)and the serum level of osteocalcin was elevated(P<0.05)in the low-and high-dose Eucommia ulmoides groups.Compared with the model group,the mRNA expression of alkaline phosphatase,osteocalcin,Runx2,β-catenin,and frizzled9 were increased in the low-and high-dose Eucommia ulmoides groups(P<0.05).Compared with the model group,the protein expression of Frizzled9 was increased in the low-dose Eucommia ulmoides group(P<0.05),while the protein expression of β-Catenin and Frizzled9 was increased in the high-dose Eucommia ulmoides group(P<0.05).Compared with the low-dose Eucommia ulmoides group,the high-dose Eucommia ulmoides group had a more significant improvement in the above indexes.To conclude,Eucommia ulmoides can effectively promote the alveolar bone formation,and its mechanism of action might be related to the activation of the Wnt/β-catenin signaling pathway.
2.Identification and validation of characterized gene NFE2L2 for ferroptosis in ischemic stroke
Mi WANG ; Shujie MA ; Yang LIU ; Rui QI
Chinese Journal of Tissue Engineering Research 2025;29(7):1466-1474
BACKGROUND:Ferroptosis is closely associated with the pathogenesis of ischemic stroke,and targeting ferroptosis is a promising regimen for the treatment of ischemic stroke,but the specific regulatory targets are unclear. OBJECTIVE:To screen ferroptosis-related characterized genes in ischemic stroke by bioinformatics and machine learning methods and validate them by cellular experiments to investigate the role of ferroptosis in ischemic stroke. METHODS:Eligible ischemic stroke-related datasets and ferroptosis expression datasets were selected based on GEO database and FerrDb database,and ferroptosis-related differential genes were screened by t-test.GO functional enrichment analysis with KEGG signaling pathway enrichment analysis was performed for ferroptosis-related differential genes.Characterized genes for ferroptosis in ischemic stroke were screened by PPI network analysis and machine learning.The reliability and biological functions of the characterized genes were explored using ROC analysis and GSEA analysis,followed by cell experiment.HT22 cells were divided into control and ischemic stroke groups.No intervention was made in the control group,and 0.1 mM H2O2 was added to the ischemic stroke group for 24 hours to simulate cellular oxidative stress injury and ferroptosis.The ferroptosis and the expression of characterized genes were verified by real-time fluorescence quantitative polymerase chain reaction(RT-PCR)and western blot assay. RESULTS AND CONCLUSION:(1)Forty-five ferroptosis-associated differential genes were obtained,and GO and KEGG enrichment analyses revealed that the differential genes were closely associated with oxidative stress,autophagy,ferroptosis,adipocytokine signaling pathway,and mitochondrial metabolism.(2)A total of one ferroptosis characterized gene,nuclear factor erythroid 2-related factor 2(NFE2L2),was identified by the MCODE plugin and cytoHubba plugin in the PPI network with the LASSO algorithm and SVM-RFE algorithm in machine learning.(3)Receiver operating characteristic curve analysis of NFE2L2 revealed that the diagnostic prediction models constructed in the training and validation sets had good accuracy and specificity.GSEA analysis of NFE2L2 revealed that the characterized gene was involved in the regulation of ischemic stroke pathogenesis through immunity,inflammatory response,amino acid metabolism,and neurofactor regulation.(4)RT-PCR and western blot analyses showed that the acyl coenzyme A synthetase long chain family,member 4(ACSL4)mRNA and protein expression levels were significantly higher in the ischemic stroke group compared with the control group(P<0.05),and the glutathione peroxidase 4(GPX4)mRNA and protein expression levels were significantly lower in the ischemic stroke group(P<0.05).Compared with the control group,the mRNA and protein expression levels of the characterized gene NFE2L2 were significantly higher in the ischemic stroke group(P<0.05).(5)It suggests that ischemic stroke is closely related to ferroptosis,and targeting the characterized gene NFE2L2 may provide certain ideas and directions for the study and treatment of ischemic stroke.
3.Exercise intervention and the role of pyroptosis in osteoarthritis
Qiuyue WANG ; Pan JIN ; Rui PU
Chinese Journal of Tissue Engineering Research 2025;29(8):1667-1675
BACKGROUND:Pyroptosis participate in the degradation of the extracellular matrix of chondrocytes,synovial inflammation and pain,and plays an important role in the prevention and treatment of osteoarthritis.In addition,exercise can inhibit the occurrence of pyroptosis to regulate the progression of osteoarthritis,which has become a research hot spot in the prevention and treatment of osteoarthritis. OBJECTIVE:To summarize the regulatory role of pyroptosis in osteoarthritis and the mechanism of exercise-mediated pyroptosis in osteoarthritis. METHODS:PubMed and CNKI databases were searched during 1992 to 2024 with the keywords"pyroptosis,osteoarthritis,chondrocyte pyroptosis,synovial cell pyroptosis,exercise"in English and Chinese,respectively.Finally,71 relevant articles were selected according to the inclusion and exclusion criteria. RESULTS AND CONCLUSION:(1)Osteoarthritis is a chronic degenerative joint disease characterized by the breakdown of cartilage extracellular matrix,synovial inflammation,and subchondral bone remodeling.This condition often leads to organic lesions,bone pain,and functional impairment.(2)Pyroptosis,a distinct programmed cell death mechanism,involves cell lysis and the release of inflammatory cytokines,triggering a robust inflammatory response,and is closely related to the development of osteoarthritis.Pyroptosis can result in the release of numerous inflammatory factors,thereby activate the nuclear factor kappa-B transcription and increase pyroptosis protein production,and in turn exacerbate the occurrence and development of osteoarthritis.Therefore,pyroptosis can be a new direction for the prevention and treatment of osteoarthritis.(3)Exercise has been shown to down-regulate the pyroptosis protein signaling pathway and inhibit the expression of related inflammatory factors,thereby playing a pivotal role in osteoarthritis prevention and treatment.Aerobic and anaerobic exercises can delay the pathological process of osteoarthritis by inhibiting the occurrence of pyroptosis.Moderate-intensity aerobic exercise is most effective in improving osteoarthritis by inhibiting pyroptosis signaling pathways,while anaerobic exercise can have beneficial effects on osteoarthritis by improving muscle mass.
4.Effects of peiminine B on Streptococcus pneumoniae-induced alveolar epithelial cell injury and its mechanism
Rui ZHANG ; Cuihong LI ; Youqin WANG ; Junyan GUAN
China Pharmacy 2025;36(7):820-825
OBJECTIVE To investigate the effects of peiminine B (PEI) on Streptococcus pneumoniae (SP)-induced alveolar epithelial cell injury by regulating the Ras-related C3 botulinum toxin substrate 1 in nucleus accumbens (Rac1)/protein kinase B (Akt)/nuclear factor κB (NF-κB) signaling pathway. METHODS Human alveolar epithelial cells (HPAEpiC) were taken and randomly divided into the Control group, SP group (1×108 cfu/mL SP bacterial solution), low-, medium-, and high-concentration PEI groups (1×108 cfu/mL SP bacterial solution+0.05, 0.10, 0.20 mmol/L PEI), and high-concentration PEI+Akt activator group (P-H+SC79 group, 1×108 cfu/mL SP bacterial solution+0.20 mmol/L PEI+10 μmol/L SC79). Except for the Control group, the other groups of cells were treated with SP bacterial solution and/or corresponding drug solution. After 24 h of treatment, the levels of inflammatory factors (interleukin-6, -18, -1β) in the supernatant solution, the contents of oxidative stress indexes [lactate dehydrogenase (LDH), reactive oxygen species (ROS) and superoxide dismutase (SOD)], apoptosis rate, as well as the expressions of proliferation/apoptosis-related proteins [cyclin-dependent kinase 1 (CDK1), B cell lymphoma-2 related X protein (Bax)] and pathway-related proteins (Rac1, Akt, phosphorylated Akt, NF-κB and phosphorylated NF-κB) were detected in each group. RESULTS Compared with the Control group, the levels of inflammatory factors in supernatant solution, LDH and ROS contents, apoptosis rate, the protein expressions of Bax and Rac1 and the phosphorylation levels of Akt and NF-κB in the SP group were significantly increased or up-regulated, while SOD content and the protein expression of CDK1 were significantly decreased or down-regulated (P<0.05). Compared with the SP group, the above indexes in PEI groups were significantly improved in a concentration-dependent manner (P<0.05). SC79 could significantly reverse the improvement effect of the high concentration of PEI (P<0.05). CONCLUSIONS PEI can alleviate SP-induced inflammation and oxidative stress damage of alveolar epithelial cells and inhibit apoptosis, which may be achieved by inhibiting Rac1/Akt/NF-κB signaling pathway.
5.Pathogenesis and Syndrome Differentiation Treatment of Heart Failure Based on "Spleen-mitochondria" and Theory of "Dampness, Turbidity, Phlegm, and Fluid-related Diseases"
Rui ZHANG ; Fuyun JIA ; Jingshun YAN ; Xuan LIU ; Yadong WANG ; Yinan MA ; Yan LIU ; Qiang XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):265-274
Guided by Academician Zhang Boli's theory of "dampness, turbidity, phlegm, and fluid-related diseases",this paper elaborated on the pathogenesis and syndrome differentiation treatment of heart failure from the perspective of the "spleen-mitochondria". It analyzed the essential similarities between "spleen-mitochondria" and "dampness, turbidity, phlegm, and fluid-related diseases", as well as their close association with the onset of heart failure. Furthermore,it explored the connection between spleen function and mitochondrial function in traditional Chinese medicine (TCM),positing that the spleen's role in transportation and transformation is analogous to mitochondrial material metabolism and energy conversion,with spleen deficiency closely related to mitochondrial dysfunction. It thus concluded that mitochondrial material metabolism and energy conversion represent the microscopic essence of the spleen's role in transportation and transformation,and mitochondrial dysfunction is a contributing factor to pathological products like dampness and turbid phlegm,which are closely associated with the occurrence of heart failure. The four elements of dampness,turbidity,phlegm,and fluid are a series of related symptoms resulting from abnormal fluid transportation and transformation,serving as both factors in the onset of heart failure and the core pathological basis for its deterioration. Therefore,during the treatment of heart failure,it is essential to regulate mitochondrial function. Early intervention should focus on eliminating dampness and turbidity to improve mitochondrial function and restore normal energy metabolism. In the middle and late stages,emphasis should be placed on resolving phlegm,promoting blood circulation,warming Yang,and reducing water retention to alleviate mitochondrial damage and improve cardiac function. Supporting Qi and strengthening the spleen should be a continuous approach,and treatment should be adjusted to enhance mitochondrial function and stabilize the condition,thereby improving prognosis. This paper discussed the role of the spleen and mitochondria in the pathogenesis of heart failure,examined the evolution of heart failure mechanisms from the perspective of dampness, turbidity, phlegm, and fluid-related diseases,and proposed a phased treatment strategy. It enriched the theory of dampness, turbidity, phlegm, and fluid-related diseases and offered new strategies for heart failure treatment. However,in practical application,TCM strategies for treating heart failure need to be integrated with modern medical approaches to provide a more solid scientific foundation for treatment.
6.Research on The Construction and Application of Multiple Fluorescence Amplification System for Three Kinds of Stains
Yi-Fan BAI ; He-Miao ZHAO ; Jing CHEN ; Hong-Di LIU ; Rui-Qin YANG ; Chong WANG
Progress in Biochemistry and Biophysics 2025;52(4):982-994
ObjectiveA multiplex amplification system was constructed based on the capillary electrophoresis platform for simultaneous detection of saliva, semen, and vaginal secretions using tissue-specific RNA markers. The aim of this study is to identify the tissue origin of suspicious body fluid stains found at crime scenes and determine whether the body fluid stains at the crime scene are one or several types among saliva, semen, and vaginal secretions. MethodsThirty saliva samples, forty semen samples, and forty vaginal secretion samples (half from 2015 and half from 2024) were collected from healthy adult volunteers. Through primer designing, system formulation, and PCR condition optimization, a multiplex fluorescent amplification system was constructed. The specificity, sensitivity, and detection ability for mixed samples of this system were investigated, and it was tested using real crime scene materials. In the primer design stage, to reduce the requirements for RNA template quality, the amplification products were set within 80-300 bp. In the system formulation stage, dominant and subordinate primers were mainly considered. By reducing the concentration of dominant primers and increasing that of subordinate primers, a capillary electrophoresis spectrum with an appropriate peak height ratio was finally obtained. Additionally, gradient experiments were designed to adjust the concentrations of PCR reagents and PCR amplification conditions, and multiple versions of DNA amplification enzymes were optimized to achieve the best experimental results. ResultsThrough statistical analysis, there was no significant difference in the capillary electrophoresis of the 3 types of body fluid samples from the two years (2015 and 2024), demonstrating that the sample preservation method in this study can preserve samples for a relatively long time. The composite amplification system constructed in this study exhibited high specificity for all 3 types of body fluid, with no cross-reactions between the markers of each type of body fluid. The minimum detection thresholds for the 3 types of body fluid reached 0.002 9, 0.001 5, and 0.42 mg/L, respectively. This system also had a high degree of discrimination for mixed samples, especially for semen-saliva mixtures, where each body fluid marker could still be successfully detected when the concentration ratio of semen to saliva was 100:1. Meanwhile, in the two actual cases presented in this article, the application of this composite amplification system performed outstandingly. ConclusionThe composite amplification detection system constructed in this study can achieve the correct screening of saliva, semen, and vaginal secretions, overcoming the problems such as low specificity and sensitivity of marker tests and unbalanced RFU values of each marker in previous studies. The specificity and sensitivity meet the practical work requirements, and the operation is simple. It provides an analytical and identification method for body fluid stains in actual case and is applicable to the identification of the tissue origin of biological evidence at crime scenes involving sexual assault, indecent assault, and other criminal acts. In the future, more types of body fluid markers will be screened to expand the types of body fluids detected by the system, and body fluid-specific cSNP and cInDel genetic markers will be introduced to infer the sources (individuals and types) of mixed and complex stains more accurately.
7.Molecular classification of head and neck squamous cell carcinoma based on hypoxia-related genes and clinical significance of STC2
ZHU Jianing ; WANG Tiantian ; ZHANG Rui ; SONG Hongquan
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(5):345-358
Objective :
To construct a molecular classification system for head and neck squamous cell carcinoma (HNSCC) utilizing hypoxia-related gene (HAG) expression profiles, and to comprehensively examine the clinicopathological significance and biological functions of the hypoxia gene stanniocalcin 2 (STC2) in HNSCC.
Methods :
Transcriptomic data and clinical information of 546 HNSCC samples were obtained from The Cancer Genome Atlas (TCGA) database, and based on the expression profiles of 200 HRGs, HNSCC was classified subclasses using non-negative matrix factorization (NMF). HNSCC was classified into three subclasses (C1, C2, and C3), and the molecular characteristics and prognostic differences of the subclasses were assessed by comparing the tumor mutation load, functional enrichment analysis, drug sensitivity, and clinical features among the subclasses. LASSO-Cox regression was used to screen prognosis-related genes and construct prognostic models. Using oral squamous cell carcinoma (OSCC)-related data in the TCGA database, we analyzed the expression differences of STC2 in OSCC and control samples, and detected the mRNA and protein expression of STC2 in oral squamous carcinoma samples using qRT-PCR and immunohistochemistry. We knocked down STC2 in CAL-27 cells and verified the knockdown efficiency by qRT-PCR and Western blot. CCK-8 assay and cell scratch assay were used to assess the effect of STC2 on cell proliferation and migration ability.
Results:
Based on HRGs expression profiles, HNSCC was categorized into three subclasses (C1, C2, and C3). Subclass C1 had moderate hypoxic activity and good prognosis; subclass C2 had the highest hypoxic activity, poor prognosis, and poor sensitivity to CTLA-4 inhibitors (P<0.05); subclass C3 had the lowest hypoxic activity and moderate prognosis, and STC2 belonged to subclass C3. The frequency of cyclin-dependent kinase inhibitor 2A (CDKN2A), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and tumor protein p53 (TP 53) mutations was higher in HNSCC. C1 genomic gain and deletion burden were significantly higher than C3 subclass (P<0.05) and C2 genomic gain than C3 subclass (P<0.05). The C2 subclass was significantly enriched in hypoxia-associated pathways, such as glycine metabolism and base excision repair (P<0.05). The C1, C2, and C3 subclasses were significantly positively correlated in terms of sex (male) (Cramer’s V=0.15), radiation exposure (Cramer’s V=0.12), medication (Cramer’s V=0.18), and pathological grading (G1/G2) (Cramer’s V=0.25) (P<0.05). Nine prognosis-related genes were screened by LASSO-Cox regression, among which high expression of STC2 was positively correlated with poorer overall survival (OS) in HNSCC patients (P<0.01). Bioinformatics analysis showed that STC2 mRNA expression was higher in OSCC than in normal controls (P<0.05). qRT-PCR and immunohistochemistry confirmed that both mRNA and protein expression of STC2 were significantly upregulated in OSCC tissues and cells (P<0.01). In vitro experiments showed that STC2 expression was knocked down to approximately 80% in CAL-27 cells (P<0.001), and the STC2 knockdown group had a reduced value-added rate (P<0.001) and a reduced percentage of scratch closure (P<0.05) compared with the control group.
Conclusion
We successfully constructed a molecular typing system for HNSCC based on the expression profiles of HRGs and categorized HNSCC into three subclasses with significant prognostic differences, among which the C2 subclass had the highest hypoxic activity and the poorest prognosis. STC2 was highly expressed in HNSCC and suggested a poor prognosis, demonstrating that it may be a potential target for HNSCC treatment.
8.Effect of Linggui Zhugantang on Ventricular Remodeling After Myocardial Infarction and RhoA/ROCK Signaling Pathway
Han REN ; Wanzhu ZHAO ; Shushu WANG ; Rui CAI ; Yuanhong ZHANG ; Shengyi HUANG ; Jinling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):1-9
ObjectiveThis study aims to investigate the effects of Linggui Zhugantang (LGZGT) on ventricular remodeling (VR) in mice with myocardial infarction (MI) and its impact on the Ras homologgene A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. MethodsThe MI model of mice was established by ligating the left anterior descending coronary artery (LAD). They were divided into the sham-operated group, the model group, the low-dose, medium-dose, and high-dose groups of LGZGT (2.34, 4.68, 9.36 g·kg-1), and the captopril group (3.25 mg·kg-1), with 10 mice in each group. After four weeks of continuous drug administration by gavage, the level of cardiac function in each group of mice was examined using small animal Doppler ultrasound. Hematoxylin-eosin (HE) staining and Masson staining was used to assess the morphological changes of myocardial tissue and calculate the rate of collagen fiber deposition in mouse myocardial tissue. Wheat germ agglutinin (WGA) staining was employed to compare the cross-sectional area of cardiomyocytes in each group of mice. The expression levels of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), type Ⅰcollagen (Col Ⅰ), Col Ⅲ, tissue inhibitor of metalloproteinase 1(TIMP1), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, Caspase-3, and cleaved Caspase-3 were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to evaluate the mRNA levels of the pathway-related genes RhoA, ROCK1, and ROCK2. The protein expression levels of RhoA, ROCK1, and ROCK2 were tested by Western blot. ResultsThe level of cardiac function was markedly declined in the model group compared to the sham-operated group(P<0.01). Myocardial tissue morphology changed significantly. The cross-sectional area of cardiomyocytes was significantly enlarged. The expression of α-SMA, MMP-2, Col Ⅰ, and Col Ⅲ was significantly upregulated(P<0.01), and TIMP1 protein expression was significantly reduced(P<0.01). The expressions of apoptosis-related proteins Bax were significantly up-regulated(P<0.01), while the expression of Bcl-2 protein was significantly decreased(P<0.01). The mRNA expression of RhoA, ROCK1, and ROCK2 were significantly upregulated (P<0.01). Compared to the model group, the low-dose, medium-dose, and high-dose groups of LGZGT and the captopril group significantly reversed the experimental results of the model group in a dose-dependent manner (P<0.05, P<0.01). ConclusionLGZGT significantly attenuated myocardial fibrosis, myocardial hypertrophy, and cardiomyocyte apoptosis after MI in mice and effectively reversed VR, the mechanism of which may be related to the modulation of the RhoA/ROCK signaling pathway.
9.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients.
10.Effect of Linggui Zhugantang on Ventricular Remodeling After Myocardial Infarction and RhoA/ROCK Signaling Pathway
Han REN ; Wanzhu ZHAO ; Shushu WANG ; Rui CAI ; Yuanhong ZHANG ; Shengyi HUANG ; Jinling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):1-9
ObjectiveThis study aims to investigate the effects of Linggui Zhugantang (LGZGT) on ventricular remodeling (VR) in mice with myocardial infarction (MI) and its impact on the Ras homologgene A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. MethodsThe MI model of mice was established by ligating the left anterior descending coronary artery (LAD). They were divided into the sham-operated group, the model group, the low-dose, medium-dose, and high-dose groups of LGZGT (2.34, 4.68, 9.36 g·kg-1), and the captopril group (3.25 mg·kg-1), with 10 mice in each group. After four weeks of continuous drug administration by gavage, the level of cardiac function in each group of mice was examined using small animal Doppler ultrasound. Hematoxylin-eosin (HE) staining and Masson staining was used to assess the morphological changes of myocardial tissue and calculate the rate of collagen fiber deposition in mouse myocardial tissue. Wheat germ agglutinin (WGA) staining was employed to compare the cross-sectional area of cardiomyocytes in each group of mice. The expression levels of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), type Ⅰcollagen (Col Ⅰ), Col Ⅲ, tissue inhibitor of metalloproteinase 1(TIMP1), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, Caspase-3, and cleaved Caspase-3 were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to evaluate the mRNA levels of the pathway-related genes RhoA, ROCK1, and ROCK2. The protein expression levels of RhoA, ROCK1, and ROCK2 were tested by Western blot. ResultsThe level of cardiac function was markedly declined in the model group compared to the sham-operated group(P<0.01). Myocardial tissue morphology changed significantly. The cross-sectional area of cardiomyocytes was significantly enlarged. The expression of α-SMA, MMP-2, Col Ⅰ, and Col Ⅲ was significantly upregulated(P<0.01), and TIMP1 protein expression was significantly reduced(P<0.01). The expressions of apoptosis-related proteins Bax were significantly up-regulated(P<0.01), while the expression of Bcl-2 protein was significantly decreased(P<0.01). The mRNA expression of RhoA, ROCK1, and ROCK2 were significantly upregulated (P<0.01). Compared to the model group, the low-dose, medium-dose, and high-dose groups of LGZGT and the captopril group significantly reversed the experimental results of the model group in a dose-dependent manner (P<0.05, P<0.01). ConclusionLGZGT significantly attenuated myocardial fibrosis, myocardial hypertrophy, and cardiomyocyte apoptosis after MI in mice and effectively reversed VR, the mechanism of which may be related to the modulation of the RhoA/ROCK signaling pathway.


Result Analysis
Print
Save
E-mail