1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Cloning and Functional Characterization of Farnesyl Diphosphate Synthase Gene in Biosynthesis of Terpenoid Components in Chinese Materia Medica
Yue ZHANG ; Feng ZHANG ; Yue ZHANG ; Chaoyue LIU ; Bolin ZHANG ; Jia LIU ; Caixia WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):175-183
ObjectiveThis study aims to enhance of the farnesyl pyrophosphate(FPP) pool in Saccharomyces cerevisiae by heterologously expressing different farnesyl diphosphate synthases(FPSs) from various plants, thereby increasing the production of terpenoid compounds by the engineered yeast. MethodsRNA from mixed samples of roots, stems, and leaves of seven plants including Arabidopsis thaliana, Rosa rugosa, Artemisia annua, Centella asiatica, Humulus lupulus, Medicago sativa, and Panax ginseng was extracted by column chromatography and reverse transcribed into the first strand of complementary DNA(cDNA), and based on the transcriptome data of the seven species of plants, sequence-specific primers were designed for CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS, the full-length of the genes was cloned, and the genes were analyzed for bioinformatics in order to construct a pESC yeast shuttle vector. These seven plant-derived FPSs were further heterologously expressed in the previous constructed β-elemene-producing yeast, and the yield of β-elemene was indicated for their catalytic acivities. ResultsThe coding sequences of CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS were all of 1 021 bp in length and encoding 301 amino acids, all of which were similarly related to the endogenous FPS-encoding gene(ERG20) in S. cerevisiae. After heterologous expression, RrFPS was identified as the most effective in catalyzing the synthesis of FPP from isopentenyl pyrophosphate(IPP) and dimethylallyl pyrophosphate(DMAPP). Compared to the control strains, the RrFPS overexpressed yeast strains YB-1-Rr and YB-3-Rr increased the production of β-elemene by 231.25% and 189.3%, respectively. ConclusionBy comparing the functions of FPS-encoding genes from seven different plant sources, it is determined that the protein encoded by the RrFPS from R. rugosa has the best catalytic ability, which can provide key genetic elements for the construction of engineered yeast strain constructs with high terpenoid production.
4."Compatibility" Relationship of Active Components and Heat-clearing and Blood-cooling Effect of Rehmannia glutinosa Roots
Yaman CHEN ; Jinpeng CUI ; Juan ZHANG ; Qingpu LIU ; Haiyan GONG ; Jingwei LEI ; Fengqing WANG ; Caixia XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):193-201
ObjectiveTo analyze the "compatibility" relationship of sugars and glycosides and the heat-clearing and blood-cooling effect of the roots of four varieties of Rehmannia glutinosa and provide a basis for research on the pharmacodynamic material basis and quality control of R. glutinosa. MethodsThe content of sugars and glycosides in the roots of four varieties of R. glutinosa was determined during the growth period. The principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and the "compatibility" relationship of active components were employed to screen out the differential samples. A rat model of bleeding due to blood heat was used to verify the pharmacodynamic differences and the potential active components of differential samples. ResultsThe content and proportion characteristics of various components in roots of the four varieties of R. glutinosa during the expansion stage and the maturity stage had obvious differences. The proportion of phenylethanoid glycosides at the maturity stage was higher than that at the expansion stage. The R. glutinosa variety 85-5 had special quality characteristics among the tested varieties. All the samples alleviated the symptoms in the rat model. The effect of clearing heat and cooling blood was different between the maturity stage and the expansion stage, as well as between 85-5 samples at the maturity stage and other samples. The effect of clearing heat and cooling blood of R. glutinosa roots was the result of the combined action of multiple components in R. glutinosa roots and might be related to the high proportions of polysaccharides, iridoid glycosides, and phenylethanoid glycosides. ConclusionThe growth stage and variety affect the quality of R. glutinosa roots. The effect of clearing heat and cooling blood of R. glutinosa roots was related to the content and proportions of various components. The study can provide a basis for the basic research on the active components and quality control of R. glutinosa.
5."Compatibility" Relationship of Active Components and Heat-clearing and Blood-cooling Effect of Rehmannia glutinosa Roots
Yaman CHEN ; Jinpeng CUI ; Juan ZHANG ; Qingpu LIU ; Haiyan GONG ; Jingwei LEI ; Fengqing WANG ; Caixia XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):193-201
ObjectiveTo analyze the "compatibility" relationship of sugars and glycosides and the heat-clearing and blood-cooling effect of the roots of four varieties of Rehmannia glutinosa and provide a basis for research on the pharmacodynamic material basis and quality control of R. glutinosa. MethodsThe content of sugars and glycosides in the roots of four varieties of R. glutinosa was determined during the growth period. The principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and the "compatibility" relationship of active components were employed to screen out the differential samples. A rat model of bleeding due to blood heat was used to verify the pharmacodynamic differences and the potential active components of differential samples. ResultsThe content and proportion characteristics of various components in roots of the four varieties of R. glutinosa during the expansion stage and the maturity stage had obvious differences. The proportion of phenylethanoid glycosides at the maturity stage was higher than that at the expansion stage. The R. glutinosa variety 85-5 had special quality characteristics among the tested varieties. All the samples alleviated the symptoms in the rat model. The effect of clearing heat and cooling blood was different between the maturity stage and the expansion stage, as well as between 85-5 samples at the maturity stage and other samples. The effect of clearing heat and cooling blood of R. glutinosa roots was the result of the combined action of multiple components in R. glutinosa roots and might be related to the high proportions of polysaccharides, iridoid glycosides, and phenylethanoid glycosides. ConclusionThe growth stage and variety affect the quality of R. glutinosa roots. The effect of clearing heat and cooling blood of R. glutinosa roots was related to the content and proportions of various components. The study can provide a basis for the basic research on the active components and quality control of R. glutinosa.
6.Risk factors of cardiovascular events by low density lipoprotein cholesterol
Caixia WANG ; Zhiyou ZENG ; Zhaoming PENG
Journal of Public Health and Preventive Medicine 2025;36(4):106-109
Objective To investigate and analyze the risk factors of cardiovascular events by low density lipoprotein cholesterol (LDL-C). Methods A total of 430 patients with stable angina pectoris (SAP) in the hospital were included from June 2021 to June 2024 for retrospective analysis. According to whether acute myocardial infarction (AMI) occurred, the enrolled patients were divided into stable group (n=257) and deteriorating group (n=173). The general data were compared between groups, and the risk factors affecting AMI in SAP patients were analyzed. The predictive value of the above risk factors on predicting AMI in SAP patients was analyzed. Results Compared with the stable group, the levels of LDL-C, TG, LP-a and Hcy in the deteriorating group were higher (t=4.033, P<0.001; t=4.104, P<0.001; t=6.342, P<0.001; t=4.883, P<0.001) while the HDL-C level was lower (t=5.129, P<0.001). Multivariate logistic regression analysis suggested that the elevated levels of LDL-C, TG, LP-a and Hcy were the risk factors of AMI in SAP patients (P<0.05), and the elevated level of HDL-C was a protective factor (P<0.05). In the ROC curve, the area under the curve (AUC), sensitivity and specificity of combination of LDL-C, HDL-C, TG, LP-a and Hcy in predicting AMI in SAP patients were 0.777, 63.01% and 81.71%. Conclusion LDL-C is a risk factor of AMI in SAP patients. Combination of HDL-C, TG, LP-a and Hcy has certain value on predicting AMI in SAP patients.
7.Analysis of Alleviating Effect of Calcium Cyanamide on Replanting Problems of Rehmannia glutinosa
Lianghua LIN ; Hengrui ZHANG ; Haoxiang YU ; Fan YANG ; Yufei WANG ; Caixia XIE ; Tao GUO ; Zhongyi ZHANG ; Liuji ZHANG ; Bao ZHANG ; Suiqing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):212-222
ObjectiveTo investigate the alleviating effect of calcium cyanamide (CaCN2) soil fumigation on replanting problems of Rehmannia glutinosa. MethodsNewly soil (NP) was used as the control group, while three treatment groups were established: replanted soil (RP), newly soil treated with CaCN2 (120 g·m², tillage depth 25 cm) (NPCC), and replanted soil treated with CaCN2 (RPCC). R. glutinosa was cultivated in all groups. At harvest, the tuber agronomic traits (number of enlarged roots, maximum root diameter, fresh weight, dry weight) were measured. The content of catalpol and rehmannioside D was quantified by ultra-high-performance liquid chromatography (UPLC) to evaluate medicinal quality. Rhizosphere soil available nutrients and enzyme activities were analyzed by assay kits. The community structure and composition of fungi and bacteria in rhizosphere soil were assessed via internal transcribed spacer 2 (ITS2) sequencing and 16S rDNA sequencing, respectively. ResultsCompared with NP, the RP group showed obviously reduced in tuber agronomic traits and quality indicators (P0.05). However, the RPCC group showed significant improvement in agronomic traits and a notable increase in rehmannioside D content compared to RP (P0.05). The contents of available phosphorus and potassium in RPCC and NP groups were obviously lower than those in RP (P0.05). The polyphenol oxidase soil (S-PPO) activity in RP was obviously lower than in NP (P0.05), while sucrose soil (S-SC), acid phosphatase soil (S-ACP), and S-PPO activities in RPCC were obviously higher than in RP (P0.05). Microbial richness and diversity in RP were obviously higher than in NP (P0.05), whereas no significant differences were observed between the RPCC and NP. The relative abundances of fungal genera Nectria, Myrothecium, Tomentella, and bacterial genus Skermanella were obviousl lower in RPCC and NP than in RP (P0.05). Correlation analysis that S-ACP activity was positively correlated with the content of rehmannioside D (P0.05). Fungal genera Engyodontium and Alternaria, and bacterial genera Pir4 lineage, Pirellula, Methyloversatilis, Brevundimonas, Ralstonia, and Acidibacter were obviously positively correlated with tuber dry weight (P0.05). Conversely, fungal genera Pseudaleuria, Nectria, Haematonectria, Ceratobasidium, and bacterial genera Streptomyces, Skermanella, RB41, Gemmatimonas, and Bacillus were obviously negatively correlated with dry weight (P0.05). The fungal genus Alternaria and bacterial genera Brevundimonas, Ralstonia, Acidibacter, and Dongia showed positive correlations with medicinal quality of R.glutinosa tuber, while fungal genera Pseudaleuria, Nectria, Stachybotrys, Fusarium, Gibberella, Ceratobasidium, and bacterial genera Sphingomonas, Skermanella, RB41, Gemmatimonas, and Bacillus were obviously negatively correlated (P0.05). ConclusionCaCN2 soil fumigation can significantly improve enzyme activities in replanted Rehmannia rhizosphere soil, enhance the utilization of available nutrients, reshape microbial community structure of replanted R.glutinosa at the family and genus level, and notably improve tuber agronomic traits and medicinal quality. This study provides a novel approach to alleviating replanting problems and offers insights for the integrated development of standardized cultivation techniques, including soil disinfection, nutrient-targeted regulation, and microbial inoculant application.
8.Impact of complex environmental exposures on acute symptoms in Jinan: Based on LASSO variable selection and generalized additive mixed models
Yongxue CUI ; Fangyi WANG ; Qi ZHANG ; Caixia MA ; Xingyi GENG
Journal of Environmental and Occupational Medicine 2025;42(10):1177-1184
Background Air pollution and meteorological factors exert complex nonlinear effects on acute symptoms in the population, with intricate interactions among these factors. Traditional statistical methods struggle to simultaneously address complex nonlinear relationships and multicollinearity issues. Objective To delineate the dynamic effects of air pollutants and meteorological parameters on acute symptoms in three distinct populations with the multicollinearity being addressed and to generate reliable scientific evidence for prevention and control of health risk factors. Methods A time-series study design was employed to collect data on air pollution (daily mean temperature, daily precipitation, daily mean relative humidity, and daily mean wind speed), meteorological factors [Air Quality Index (AQI), fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and 8-hour maximum ozone (O3)], and acute symptoms such as fever, cough, and sore throat in Jinan from June to December 2023. Key variables were selected using least absolute shrinkage and selection operator (LASSO) regression, followed by generalized additive mixed modeling (GAMM) to analyze the health effects of combined environmental exposures to air pollution and meteorological factors. Linear variables were modeled using linear mixed-effects function, nonlinear variables were smoothed using thin-plate regression splines, and variables with interaction effects were smoothed using low-rank scale-invariant tensor product splines. Fluctuations in independent variables following a normal distribution were treated as sampling errors and incorporated as random effects in the GAMM. Results For fever, the daily mean temperature, daily mean relative humidity, daily mean wind speed, and ambient SO2 were statistically significant (P<0.05), with daily mean wind speed being a linear influencing factor. When the daily mean temperature was below 3 °C, each 10 °C increase corresponded to a relative risk (RR) of 2.64 (95%CI: 2.50, 2.79). When the daily mean temperature was ≥3 °C, each 10 °C increase corresponded to an RR of 0.86 (95%CI: 0.83, 0.89). Each 10% increase in daily mean relative humidity was associated with an RR of 0.93 (95%CI: 0.89, 0.97). Each 1 m·s−1 increase in daily mean wind speed corresponded to an RR of 1.06 (95%CI: 1.02, 1.10). Within the concentration ranges of <10 μg·m−3, 10–<12.5 μg·m−3, and ≥12.5 μg·m−3, each 1 μg·m−3 increase in ambient SO2 corresponded to RR values of 1.01 (95%CI: 0.98, 1.05), 1.21 (95%CI: 1.17, 1.24), and 0.97 (95%CI: 0.94, 0.99), respectively. For cough, the daily mean temperature, daily mean relative humidity, PM10, and SO2 were statistically significant (P<0.001), with PM10 being a linear influencing factor. When the daily mean temperature was below 1 °C, each 10 °C increase corresponded to an RR of 1.47 (95%CI: 1.42, 1.52). When the daily mean temperature was ≥1 °C, each 10 °C increase corresponded to an RR of 0.85 (95%CI: 0.82, 0.87). Each 10% increase in daily mean relative humidity was associated with an RR of 0.95 (95%CI: 0.92, 0.98). Each 50 μg·m−3 increase in PM10 concentration corresponded to an RR of 1.05 (95%CI: 1.02, 1.08). Within the concentration ranges of <10 μg·m−3, 10–<12.5 μg·m−3, and ≥ 12.5 μg·m−3, each 1 μg·m−3 increase in ambient SO2 corresponded to RR values of 1.00 (95%CI: 0.97, 1.03), 1.12 (95%CI: 1.09, 1.16), and 0.98 (95%CI: 0.95, 1.00), respectively. For sore throat, the daily mean temperature, daily mean relative humidity, daily mean wind speed, PM10, and SO2 were statistically significant (P<0.05), with daily mean wind speed and PM10 being linear influencing factors. When the daily mean temperature was below 2 °C, each 10 °C increase corresponded to an RR of 1.82 (95%CI: 1.69, 1.96). When the daily mean temperature was ≥2 °C, each 10 °C increase corresponded to an RR of 0.81 (95%CI: 0.77, 0.87). Each 10% increase in daily mean relative humidity was associated with an RR of 0.94 (95%CI: 0.88, 1.00). Within the concentration ranges of <10 μg·m−3, 10–<12.5 μg·m−3, and ≥12.5 μg·m−3, each 1 μg·m−3 increase in ambient SO2 corresponded to RR values of 1.02 (95%CI: 0.97, 1.08), 1.13 (95%CI: 1.08, 1.19), and 0.98 (95%CI: 0.94, 1.02), respectively. Each 1 m·s−1 increase in daily mean wind speed and each 50 μg·m−3 increase in PM10 concentration were associated with RR values of 1.06 (95%CI: 1.00, 1.12) and 1.04 (95%CI: 0.98, 1.10), respectively. An interaction effect was observed between daily mean wind speed and PM10: increasing daily mean wind speed non-linearly reduced the impact of PM10, on sore throat whereas PM10 had no significant effect on wind speed. Conclusion This study, by combining LASSO and GAMM, largely eliminates the multicollinearity among selected variables. It reveals complex non-linear effects and interactions between air pollutants, meteorological factors, and acute symptoms in different population groups in Jinan. The symptoms like fever, cough, and sore throat are non-linearly associated with daily mean temperature and SO2 concentration, while PM10 and wind speed show a linear relationship or interactive effects. These findings provide a new basis for the precise prevention and control of health risk factors.
9.Innovative strategies for improving CAR-T cell therapy: A nanomedicine perspective.
Mengyao WANG ; Zhengyu YU ; Liping YUAN ; Peipei YANG ; Caixia JING ; Ying QU ; Zhiyong QIAN ; Ting NIU
Chinese Medical Journal 2025;138(21):2769-2782
Chimeric antigen receptor T (CAR-T) cells have reshaped the treatment landscape of hematological malignancies, offering a potentially curative option for patients. Despite these major milestones in the field of immuno-oncology, growing experience with CAR-T cells has also highlighted several limitations of this strategy. The production process of CAR-T cells is complex, time-consuming, and costly, thus leading to poor drug accessibility. The potential carcinogenic risk of viral transfection systems remains a matter of controversy. Treatment-related side effects, such as cytokine release syndrome, can be life-threatening. And the biggest challenge is the inadequate efficacy related to poor infiltration and retention of CAR-T cells in tumor tissues and impaired T cell activation caused by the immunosuppressive tumor microenvironment (TME). Innovative strategies are urgently needed to address these problems, and nanomedicine offers good solutions to these challenges. In this review, we provide a comprehensive summary of recent advancements in the application of nanomaterials to enhance CAR-T cell therapy. We examine the role of innovative nanoparticle-based delivery systems in the production of CAR-T cells, with a particular focus on polymeric delivery systems and lipid nanoparticles (LNPs). Furthermore, we explore various strategies for delivering immune stimulators, which significantly enhance the efficacy of CAR-T cells by modulating T cell viability and functionality or by reprogramming the immunosuppressive TME. In addition, we discuss several novel therapeutic approaches aimed at mitigating the adverse effects associated with CAR-T therapies. Finally, we offer an integrated perspective on the future challenges and opportunities facing CAR-T therapies.
Humans
;
Nanomedicine/methods*
;
Receptors, Chimeric Antigen/metabolism*
;
Immunotherapy, Adoptive/methods*
;
T-Lymphocytes/immunology*
;
Nanoparticles/chemistry*
;
Animals
10.Predicting Invasive Non-mucinous Lung Adenocarcinoma IASLC Grading: A Nomogram Based on Dual-energy CT Imaging and Conventional Features.
Kaibo ZHU ; Liangna DENG ; Yue HOU ; Lulu XIONG ; Caixia ZHU ; Haisheng WANG ; Junlin ZHOU
Chinese Journal of Lung Cancer 2025;28(8):585-596
BACKGROUND:
Lung adenocarcinoma is an important pathohistologic subtype of non-small cell lung cancer (NSCLC). Invasive non-mucinous pulmonary adenocarcinomas (INMA) tend to have a poor prognosis due to their significant heterogeneity and diverse histologic components. Establishing a histologic grading system for INMA is crucial for evaluating its malignancy. In 2021, the International Association for the Study of Lung Cancer (IASLC) proposed that a new histological grading system could better stratify the prognosis of INMA patients. The aim of this study was to establish a visualized nomogram model to predict INMA IASLC grading preoperatively by means of dual-energy computed tomography (DECT), fractal dimension (FD), clinical features and conventional CT parameters.
METHODS:
A total of 112 patients with INMA who underwent preoperative DECT were retrospectively enrolled from March 2021 to January 2025. Patients were categorized into low-intermediate grade and high grade groups based on IASLC grading. The clinical characteristics and conventional CT parameters, including baseline features, biochemical markers, and serum tumor markers, were collected. DECT-derived parameters, including iodine concentration (IC), effective atomic number (eff-Z), and normalized IC (NIC), were collected and determined as NIC ratio (NICr) and fractal dimension (FD). Univariate analysis was employed to compare differences in conventional characteristics and DECT parameters between the two groups. Variables demonstrating statistical significance were subsequently incorporated into a multivariate Logistic regression analysis. A nomogram model integrating clinical data, conventional CT parameters, and DECT parameters was developed to identify independent predictors for IASLC grading of INMA. The discriminatory performance of the model was evaluated using receiver operating characteristic (ROC) curve analysis.
RESULTS:
Multivariate analysis identified smoking history [odds ratio (OR)=2.848, P=0.041], lobulation sign (OR=2.163, P=0.004), air bronchogram (OR=7.833, P=0.005), eff-Z in arterial phase (OR=4.266, P<0.001), and IC in arterial phase (OR=1.290, P=0.012) as independent and significant predictors for IASLC grading of INMA. The nomogram model constructed based on these indicators demonstrated optimal predictive performance, achieving an area under the curve (AUC) of 0.804 (95%CI: 0.725-0.883), with specificity and sensitivity of 85.3% and 65.7%, respectively.
CONCLUSIONS
The nomogram model based on clinical features, imaging features and spectral CT parameters have a large potential for application in the preoperative noninvasive assessment of INMA IASLC grading.
Humans
;
Nomograms
;
Female
;
Male
;
Middle Aged
;
Tomography, X-Ray Computed/methods*
;
Lung Neoplasms/pathology*
;
Aged
;
Retrospective Studies
;
Adenocarcinoma of Lung/pathology*
;
Neoplasm Grading
;
Adult


Result Analysis
Print
Save
E-mail