1.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
2.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
3.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
4.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
5.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
6.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
7.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
8.The new definition of metabolic dysfunction-associated steatotic liver disease: the role of ultrasound and elastography
Xinrui JIN ; Terry Cheuk-Fung YIP ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Jimmy Che-To LAI
Ultrasonography 2025;44(3):189-201
In 2023, nonalcoholic fatty liver disease was renamed metabolic dysfunction-associated steatotic liver disease by the American and European liver associations. This new nomenclature recognizes metabolic dysfunction as the central driver of the disease, and the diagnostic criteria now require the presence of hepatic steatosis plus at least one of five cardiometabolic risk factors. B-mode ultrasonography remains the most common and practical method for detecting hepatic steatosis, although newer ultrasound techniques based on attenuation, backscatter, and speed of sound have gained traction as tools to diagnose and quantify hepatic steatosis. Additionally, ultrasound elastography is increasingly used in routine clinical practice to assess liver fibrosis, diagnose cirrhosis, and identify clinically significant portal hypertension.
9.Dipeptidyl peptidase-4 inhibitors are associated with improved survival of patients with diabetes mellitus and hepatocellular carcinoma receiving immunotherapy: Letter to the editor on “Statin and aspirin for chemoprevention of hepatocellular carcinoma: Time to use or wait further?”
Dorothy Cheuk-Yan YIU ; Huapeng LIN ; Vincent Wai-Sun WONG ; Grace Lai-Hung WONG ; Ken LIU ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2024;30(4):970-973
10.Hepatocyte apoptosis fragment product cytokeratin-18 M30 level and non-alcoholic steatohepatitis risk diagnosis: an international registry study.
Huai ZHANG ; Rafael S RIOS ; Jerome BOURSIER ; Rodolphe ANTY ; Wah-Kheong CHAN ; Jacob GEORGE ; Yusuf YILMAZ ; Vincent Wai-Sun WONG ; Jiangao FAN ; Jean-François DUFOUR ; George PAPATHEODORIDIS ; Li CHEN ; Jörn M SCHATTENBERG ; Junping SHI ; Liang XU ; Grace Lai-Hung WONG ; Naomi F LANGE ; Margarita PAPATHEODORIDI ; Yuqiang MI ; Yujie ZHOU ; Christopher D BYRNE ; Giovanni TARGHER ; Gong FENG ; Minghua ZHENG
Chinese Medical Journal 2023;136(3):341-350
BACKGROUND:
Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.
METHODS:
Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).
RESULTS:
A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P < 0.001, P = 0.026 and P = 0.049, respectively). CK-18 M30 levels were positively associated with histological NAS in most centers. The area under the receiver operating characteristics (AUROC) for NASH was 0.750 (95% confidence intervals: 0.714-0.787), and CK-18 M30 at Youden's index maximum was 275.7 U/L. Both sensitivity (55% [52%-59%]) and positive predictive value (59%) were not ideal.
CONCLUSION
This large multicenter registry study shows that CK-18 M30 measurement in isolation is of limited value for non-invasively diagnosing NASH.
Humans
;
Non-alcoholic Fatty Liver Disease/diagnosis*
;
Keratin-18
;
Biomarkers
;
Biopsy
;
Hepatocytes/pathology*
;
Apoptosis
;
Liver/pathology*

Result Analysis
Print
Save
E-mail