1.Cinobufacini Inhibits Survival and Metastasis of Hepatocellular Carcinoma via c-Met Signaling Pathway.
Ya-Nan MA ; Xue-Mei JIANG ; Xi-Qi HU ; Ling WANG ; Jian-Jun GAO ; Hui LIU ; Fang-Hua QI ; Pei-Pei SONG ; Wei TANG
Chinese journal of integrative medicine 2025;31(4):311-325
OBJECTIVE:
To investigate the anti-tumor effects of cinobufacini (CINO) on hepatocellular carcinoma (HCC) induced by des-gamma-carboxy-prothrombin (DCP) and to uncover the underlying mechanisms.
METHODS:
The inhibitory effect of CINO on HCC cell proliferation was evaluated using the cell counting kit-8 method, and the apoptosis rate was quantified using flow cytometry. Immunofluorescence and Western blot analyses were used to investigate the differential expression of proteins associated with cell growth, apoptosis, migration, and invasion pathways after CINO treatment. The therapeutic potential of CINO for HCC was confirmed, and the possibility of combining cinobufacini with c-Met inhibitor for the treatment of primary HCC was further validated by in vivo experiments.
RESULTS:
Under the induction of DCP, CINO inhibited the activity of HCC cells, induced apoptosis, and inhibited migration and invasion. Upon the induction of DCP, CINO regulated c-Met activation and the activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathways. In a mouse model of HCC, CINO exhibited significant antitumor effects by inhibiting the phosphorylation of c-Met and the downstream PI3K/AKT and MEK/ERK pathways in tumor tissues.
CONCLUSIONS
CINO inhibited HCC cell growth, promoted apoptosis, and suppressed HCC cell invasion and migration by targeting c-Met and PI3K/AKT and MEK/ERK signaling pathways under DCP induction.
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Liver Neoplasms/drug therapy*
;
Signal Transduction/drug effects*
;
Animals
;
Humans
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Amphibian Venoms/therapeutic use*
;
Cell Line, Tumor
;
Neoplasm Metastasis
;
Cell Survival/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Neoplasm Invasiveness
;
Mice, Inbred BALB C
;
Mice, Nude
;
Mice
;
Male
;
Bufanolides/therapeutic use*
;
Protein Precursors
;
Prothrombin
;
Biomarkers
2.Selective anastasis induction by bee venom in normal cells: a promising strategy for breast cancer therapy with minimal impact on cell viability.
Sinan TETIKOGLU ; Muharrem AKCAN ; Ugur UZUNER ; Selcen CELIK UZUNER
Journal of Zhejiang University. Science. B 2025;26(11):1121-1131
Anastasis is a phenomenon described as a cellular escape from ethanol-induced cell death. Although the relevant mechanism has not yet been fully elucidated, anastasis is thought to play a role in drug resistance in cancer cells. To date, the regulation of anastasis in normal and cancerous cells has not been clarified. The current cancer treatment strategies are expected to selectively attack cancer cells without negatively affecting normal cell proliferation. Inspired by the anti-cancer potential of bee venom, this study is the first to evaluate whether bee venom has similar selectivity in producing an anastatic effect. The results indicated that bee venom induces anastasis in normal cells (Michigan Cancer Foundation-10A (MCF10A), Adult Retinal Pigment Epithelium cell line-19 (ARPE-19), and National Institutes of Health 3T3 cell line (NIH3T3)) but causes irreversible cell death in breast cancer cells (M.D. Anderson-Metastatic Breast-231 (MDA-MB-231) and Michigan Cancer Foundation-7 (MCF7)). Liver cancer (HepG2) cells were moderately more resistant to permanent cell death after bee venom treatment compared to breast cancer cells. However, cisplatin caused permanent non-selective cell death in both normal and cancerous cells. The selectivity indices after bee venom treatment were higher compared to cisplatin. Taken together, bee venom was shown to induce selective anastasis only in normal cells, not in cancer cells, which suggests that bee venom has significant potential in selective cancer therapy, especially for breast cancer, via promoting the recovery and maintenance of viability of normal cells.
Bee Venoms/pharmacology*
;
Humans
;
Animals
;
Mice
;
Cell Survival/drug effects*
;
Breast Neoplasms/pathology*
;
Female
;
Cell Line, Tumor
;
NIH 3T3 Cells
;
Antineoplastic Agents/pharmacology*
;
Cisplatin/pharmacology*
;
Cell Death/drug effects*
;
Hep G2 Cells
;
MCF-7 Cells
3.Protein C activator derived from snake venom protects human umbilical vein endothelial cells against hypoxia-reoxygenation injury by suppressing ROS via upregulating HIF-1α and BNIP3.
Ming LIAO ; Wenhua ZHONG ; Ran ZHANG ; Juan LIANG ; Wentaorui XU ; Wenjun WAN ; Chao Li Shu WU ; 曙 李
Journal of Southern Medical University 2025;45(3):614-621
OBJECTIVES:
To investigate the antioxidative mechanism of snake venom-derived protein C activator (PCA) in mitigating vascular endothelial cell injury.
METHODS:
Human umbilical vein endothelial cells (HUVECs) were cultured in DMEM containing 1.0 g/L D-glucose and exposed to hypoxia (1% O2) for 6 h followed by reoxygenation for 2 h to establish a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R). The cell model was treated with 2 μg/mL PCA alone or in combination with 2-ME2 (a HIF-1α inhibitor) or DMOG (a HIF-1α stabilizer), and intracellular production of reactive oxygen species (ROS) and protein expression levels of HIF-1α, BNIP3, and Beclin-1 were detected using DCFH-DA fluorescence probe, flow cytometry, and Western blotting. The OGD/R cell model was transfected with a BNIP3-specific siRNA or a scrambled control sequence prior to PCA treatment, and the changes in protein expressions of HIF-1α, BNIP3 and Beclin-1 and intracellular ROS production were examined.
RESULTS:
In the OGD/R cell model, PCA treatment significantly upregulated HIF-1α, BNIP3 and Beclin-1 expressions and reduced ROS production. The effects of PCA were obviously attenuated by co-treatment with 2-ME2 but augmented by treatment with DMOG (a HIF-1α stabilizer). In the cell model with BNIP3 knockdown, PCA treatment increased BNIP3 expression and decreased ROS production without causing significant changes in HIF-1α expression. Compared with HUVECs with PCA treatment only, the cells with BNIP3 knockdown prior to PCA treatment showed significantly lower Beclin-1 expression and higher ROS levels.
CONCLUSIONS
Snake venom PCA alleviates OGD/R-induced endothelial cell injury by upregulating HIF-1α/BNIP3 signaling to suppress ROS generation, suggesting its potential as a therapeutic agent against oxidative stress in vascular pathologies.
Humans
;
Reactive Oxygen Species/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Membrane Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Up-Regulation
;
Cell Hypoxia
;
Cells, Cultured
;
Snake Venoms/chemistry*
;
Beclin-1
4.Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo.
Bo JIANG ; Zhao-Yang MENG ; Yu-Jie HU ; Jun-Jun CHEN ; Ling ZONG ; Ling-Yan XU ; Xiang-Qi ZHANG ; Jing-Xian ZHANG ; Yong-Long HAN
Journal of Integrative Medicine 2025;23(5):576-590
OBJECTIVE:
Huachansu injection (HCSI), a promising anti-cancer Chinese medicine injection, has been reported to have the potential for reducing the toxicity of chemotherapy and improving the quality of life for colorectal cancer (CRC) patients. The objective of this study is to explore the synergistic and detoxifying effects of HCSI when used in combination with irinotecan (CPT-11).
METHODS:
To investigate the effect of HCSI on anti-CRC efficacy and intestinal toxicity of CPT-11, we measured changes in the biological behavior of LoVo cells in vitro, and anti-tumor effects in LoVo cell xenograft nude mice models in vivo. Meanwhile, the effect of HCSI on intestinal toxicity and the uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) expression was investigated in the CPT-11-induced colitis mouse model. Subsequently, we measured the effect of HCSI and its 13 constituent bufadienolides on the expression of UGT1A1 and organic anion transporting polypeptides 1B3 (OATP1B3) in HepG2 cells.
RESULTS:
The combination index (CI) results showed that the combination of HCSI and CPT-11 exhibited a synergistic effect (CI < 1), which significantly suppressing the LoVo cell migration, enhancing G2/M and S phase arrest, and inhibiting tumor growth in vivo. Additionally, the damage to intestinal tissues was attenuated by HCSI in CPT-11-induced colitis model, while the increased expression of UGT1A1 in HepG2 cells and in mouse was observed.
CONCLUSION
The co-therapy with HCSI alleviated the intestinal toxicity induced by CPT-11 and exerted an enhanced anti-CRC effect. The detoxifying mechanism may be related to the increased expression of UGT1A1 and OATP1B3 by HCSI and its bufadienolides components. The findings of this study may serve as a theoretical insights and strategies to improve CRC patient outcomes. Please cite this article as: Jiang B, Meng ZY, Hu YJ, Chen JJ, Zong L, Xu LY, Zhang XQ, Zhang JX, Han YL. Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo. J Integr Med. 2025; 23(5):576-590.
Irinotecan/therapeutic use*
;
Animals
;
Glucuronosyltransferase/genetics*
;
Humans
;
Colorectal Neoplasms/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Nude
;
Mice
;
Up-Regulation/drug effects*
;
Male
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Hep G2 Cells
;
Cell Line, Tumor
;
Intestines/drug effects*
;
Amphibian Venoms
5.Research progress in mastoparans.
Anqi HUANG ; Yinfeng LIANG ; Sirui WANG ; Runrun SHE ; Jin YAN ; Yingyu WANG ; Luyao ZHANG ; Mingchun LIU
Chinese Journal of Biotechnology 2024;40(12):4408-4417
Mastoparans (MP), a class of α-helix cationic insect-derived antimicrobial peptides, have a broad spectrum of biological activities including inhibiting bacteria, fungi, viruses, and parasites. Amino acid substitution, peptide modification, peptide chain cyclization, and dosage form modification can enhance the biological activities and target and reduce the toxicity of mastoparans. In this review, we summarize the structure, biological function and modification methods of mastoparans, and prospect the development of antibacterial drugs based on mastoparans, so as to provide reference for the research of mastoparans as a new antibacterial drug.
Intercellular Signaling Peptides and Proteins/pharmacology*
;
Peptides/chemistry*
;
Anti-Bacterial Agents/chemistry*
;
Wasp Venoms/chemistry*
;
Animals
6.Anaphylaxis Induced by Multiple Sensitization With Hymenoptera Venom:Report of One Case.
Hui-Min ZHAO ; Ying-Yang XU ; Li-Sha LI ; Hui-Shuang ZHENG ; Kai GUAN
Acta Academiae Medicinae Sinicae 2024;46(6):974-978
Hymenoptera venom-sensitized patients may experience systemic reactions,and severe patients may even present life-threatening symptoms such as collapse and syncope.Here we report a case of anaphylaxis triggered by multiple sensitization with Hymenoptera venom.Clinical diagnosis and in vitro allergen testing showed that the patient developed anaphylaxis to wasp and/or fire ant venom.In clinical practice,allergen testing of patients with anaphylaxis to Hymenoptera venom aims to clarify the sensitizing proteins and lay a foundation for future research on immunotherapy for Hymenoptera venom in China.For Hymenoptera-allergic patients,daily outdoor protection is crucial,and an epinephrine syringe can be carried with them if necessary.
Anaphylaxis/etiology*
;
Humans
;
Animals
;
Hymenoptera/immunology*
;
Arthropod Venoms/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Adult
;
Wasp Venoms/adverse effects*
7.Bioactive peptides from scorpion venoms: therapeutic scaffolds and pharmacological tools.
Kamau PETER MUIRURI ; Jian ZHONG ; Bing YAO ; Ren LAI ; Lei LUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(1):19-35
Evolution and natural selection have endowed animal venoms, including scorpion venoms, with a wide range of pharmacological properties. Consequently, scorpions, their venoms, and/or their body parts have been used since time immemorial in traditional medicines, especially in Africa and Asia. With respect to their pharmacological potential, bioactive peptides from scorpion venoms have become an important source of scientific research. With the rapid increase in the characterization of various components from scorpion venoms, a large number of peptides are identified with an aim of combating a myriad of emerging global health problems. Moreover, some scorpion venom-derived peptides have been established as potential scaffolds helpful for drug development. In this review, we summarize the promising scorpion venoms-derived peptides as drug candidates. Accordingly, we highlight the data and knowledge needed for continuous characterization and development of additional natural peptides from scorpion venoms, as potential drugs that can treat related diseases.
Animals
;
Scorpion Venoms/pharmacology*
;
Peptides/pharmacology*
;
Scorpions
;
Drug Development
;
Medicine, Traditional
8.Anti-epileptic/pro-epileptic effects of sodium channel modulators from Buthus martensii Karsch.
Qian XIAO ; Zhi-Ping ZHANG ; Yang-Bo HOU ; Dong-Xiao QU ; Le-Le TANG ; Li-Ji CHEN ; Guo-Yi LI ; Yong-Hua JI ; Jie TAO ; Yu-Dan ZHU
Acta Physiologica Sinica 2022;74(4):621-632
The East Asian scorpion Buthus martensii Karsch (BmK) is one of the classical traditional Chinese medicines for treating epilepsy for over a thousand years. Neurotoxins purified from BmK venom are considered as the main active ingredients, acting on membrane ion channels. Voltage-gated sodium channels (VGSCs) play a crucial role in the occurrence of epilepsy, which make them become important drug targets for epilepsy. Long chain toxins of BmK, composed of 60-70 amino acid residues, could specifically recognize VGSCs. Among them, α-like neurotoxins, binding to the receptor site-3 of VGSC, induce epilepsy in rodents and can be used to establish seizure models. The β or β-like neurotoxins, binding to the receptor site-4 of VGSC, have significant anticonvulsant effects in epileptic models. This review aims to illuminate the anticonvulsant/convulsant effects of BmK polypeptides by acting on VGSCs, and provide potential frameworks for the anti-epileptic drug-design.
Animals
;
Anticonvulsants/therapeutic use*
;
Neurotoxins/pharmacology*
;
Scorpion Venoms/pharmacology*
;
Scorpions/chemistry*
;
Voltage-Gated Sodium Channels
9.Agkistrodon halys venom antitumor component-I inhibits vasculogenic mimicry in triple-negative breast cancer cells in vitro by down-regulating MMP2.
Yu GE ; Lin Ming LU ; Shu Yu TIAN ; Yu XIAO ; Shang Fu XIE ; Qi WANG ; Hui ZHI
Journal of Southern Medical University 2022;42(3):438-442
OBJECTIVE:
To investigate the inhibitory effect of agkistrodon halys venom antitumor component-I (AHVAC-I) on vasculogenic mimicry (VM) formation in triple-negative breast cancer MDA-MB-231 cells and explore its possible mechanism.
METHODS:
CCK8 assay was used to determine the optimal concentration of AHVAC-I for cell treatment based on its halfinhibitory concentration (IC50). MDA-MB-231 cells were treated with different concentrations of AHVAC-I or 5-Fu, and the changes in vasomimetic capacity of the cells were examined using Matrigel assay. The expression levels of matrix metalloproteinase-2 (MMP2) and MMP9 in the treated cells were detected using quantitative PCR and Western blotting.
RESULTS:
Compared with the control treatment with culture medium, treatment with 5, 10 and 20 μg/mL AHVAC-I significantly reduced vasomimetic ability of MDA-MB-231 cells in a dose-dependent manner (P < 0.01). MMP2 supplementation obviously restored the vasomimetic ability of the cells inhibited by AHVAC-I.
CONCLUSION
AHVAC-I inhibits VM formation in triplenegative breast cancer cells in vitro by down-regulating MMP2 production.
Agkistrodon/metabolism*
;
Animals
;
Cell Line, Tumor
;
Healthy Life Expectancy
;
Humans
;
Matrix Metalloproteinase 2/metabolism*
;
Neovascularization, Pathologic/metabolism*
;
Triple Negative Breast Neoplasms/metabolism*
;
Venoms
10.Gene cloning, heterologous expression and activity identification of latroeggtoxin-Ⅵ.
Shuai YAN ; Xiaochao TANG ; Dianmei YU ; Haiyan WANG ; Wenwen MENG ; Pingping TANG ; Xianchun WANG
Chinese Journal of Biotechnology 2021;37(2):635-645
One of the distinct characters of Latrodectus tredecimguttatus is that its toxic components exist not only in the venomous glands, but also in the tissues outside the venomous glands and even in the eggs. Investigation on the toxins outside the venomous glands can deepen our understanding of spider toxins and discover new lead molecules with important application prospects. In order to explore the low-abundance proteinaceous toxins in the L. tredecimguttatus eggs, we used bioinformatic strategies to mine a gene sequence encoding a peptide toxin from the transcriptome of L. tredecimguttatus eggs, and then heterologously expressed the gene successfully with a 3'-RACE combined with nest PCR strategy. Biological activity analyses indicated that the expressed peptide toxin, named latroeggtoxin-Ⅵ (LETX-Ⅵ), could inhibit Na⁺ channel currents in ND7/23 cells and promote dopamine release from PC12 cells, without obvious toxicity against Periplaneta americana and bacteria as well as fungi including Staphylococcus aureus and Candida albicans, demonstrating that LETX-Ⅵ is a mammal-specific neurotoxin with a potential application prospect in development of the tool reagents for neurobiological study and the drugs for treating related diseases.
Animals
;
Arthropod Proteins/genetics*
;
Black Widow Spider/genetics*
;
Cloning, Molecular
;
Rats
;
Spider Venoms/genetics*
;
Transcriptome

Result Analysis
Print
Save
E-mail