1.Molecular mechanism of magnesium alloy promoting macrophage M2 polarization through modulation of PI3K/AKT signaling pathway for tendon-bone healing in rotator cuff injury repair.
Xianhao SHENG ; Wen ZHANG ; Shoulong SONG ; Fei ZHANG ; Baoxiang ZHANG ; Xiaoying TIAN ; Wentao XIONG ; Yingguang ZHU ; Yuxin XIE ; Zi'ang LI ; Lili TAN ; Qiang ZHANG ; Yan WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):174-186
OBJECTIVE:
To evaluate the effect of biodegradable magnesium alloy materials in promoting tendon-bone healing during rotator cuff tear repair and to investigate their potential underlying biological mechanisms.
METHODS:
Forty-eight 8-week-old Sprague Dawley rats were taken and randomly divided into groups A, B, and C. Rotator cuff tear models were created and repaired using magnesium alloy sutures in group A and Vicryl Plus 4-0 absorbable sutures in group B, while only subcutaneous incisions and sutures were performed in group C. Organ samples of groups A and B were taken for HE staining at 1 and 2 weeks after operation to evaluate the safety of magnesium alloy, and specimens from the supraspinatus tendon and proximal humerus were harvested at 2, 4, 8, and 12 weeks after operation. The specimens were observed macroscopically at 4 and 12 weeks after operation. Biomechanical tests were performed at 4, 8, and 12 weeks to test the ultimate load and stiffness of the healing sites in groups A and B. At 2, 4, and 12 weeks, the specimens were subjected to the following tests: Micro-CT to evaluate the formation of bone tunnels in groups A and B, HE staining and Masson staining to observe the regeneration of fibrocartilage at the tendon-bone interface after decalcification and sectioning, and Goldner trichrome staining to evaluate the calcification. Immunohistochemical staining was performed to detect the expressions of angiogenic factors, including vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2), as well as osteogenic factors at the tendon-bone interface. Additionally, immunofluorescence staining was used to examine the expressions of Arginase 1 and Integrin beta-2 to assess M1 and M2 macrophage polarization at the tendon-bone interface. The role of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in tendon-bone healing was further analyzed using real-time fluorescence quantitative PCR.
RESULTS:
Analysis of visceral sections revealed that magnesium ions released during the degradation of magnesium alloys did not cause significant toxic effects on organs such as the heart, liver, spleen, lungs, and kidneys, indicating good biosafety. Histological analysis further demonstrated that fibrocartilage regeneration at the tendon-bone interface in group A occurred earlier, and the amount of fibrocartilage was significantly greater compared to group B, suggesting a positive effect of magnesium alloy material on tendon-bone interface repair. Additionally, Micro-CT analysis results revealed that bone tunnel formation occurred more rapidly in group A compared to group B, further supporting the beneficial effect of magnesium alloy on bone healing. Biomechanical testing showed that the ultimate load in group A was consistently higher than in group B, and the stiffness of group A was also greater than that of group B at 4 weeks, indicating stronger tissue-carrying capacity following tendon-bone interface repair and highlighting the potential of magnesium alloy in enhancing tendon-bone healing. Immunohistochemical staining results indicated that the expressions of VEGF and BMP-2 were significantly upregulated during the early stages of healing, suggesting that magnesium alloy effectively promoted angiogenesis and bone formation, thereby accelerating the tendon-bone healing process. Immunofluorescence staining further revealed that magnesium ions exerted significant anti-inflammatory effects by regulating macrophage polarization, promoting their shift toward the M2 phenotype. Real-time fluorescence quantitative PCR results demonstrated that magnesium ions could facilitate tendon-bone healing by modulating the PI3K/AKT signaling pathway.
CONCLUSION
Biodegradable magnesium alloy material accelerated fibrocartilage regeneration and calcification at the tendon-bone interface in rat rotator cuff tear repair by regulating the PI3K/AKT signaling pathway, thereby significantly enhancing tendon-bone healing.
Animals
;
Rotator Cuff Injuries/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Wound Healing/drug effects*
;
Alloys/pharmacology*
;
Rats
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rotator Cuff/metabolism*
;
Macrophages/metabolism*
;
Magnesium/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Male
;
Biocompatible Materials
;
Bone Morphogenetic Protein 2/metabolism*
2.Advances in pharmacological research for retinopathy of prematurity.
Yanxi XIE ; Suilian ZHENG ; Hui YANG
Journal of Zhejiang University. Medical sciences 2025;54(3):411-421
Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease that threatens the vision of premature infants. Various novel drugs have demonstrated therapeutic potential for ROP by targeting signaling pathways associated with vascular endothelial growth factor (VEGF) [such as PI3K/AKT, hypoxia-inducible factor (HIF)-1α/VEGF], oxidative stress, tumor necrosis factor (TNF)-α, and Notch pathways. Propranolol, insulin-like growth factor-1, and celecoxib attenuate pathological neovascularization via the PI3K/Akt signaling pathway. Tripterine and melatonin inhibit retinal neovascularization by modulating the HIF-1α/VEGF signaling axis. Adiponectin mitigates the damage caused by oxidative stress and preserves endothelial function by enhancing endothelial nitric oxide synthase activity. Omega-3 polyunsaturated fatty acids suppress TNF-α-mediated inflammatory responses, modulate retinal development and angiogenesis, and reduce retinal neovascular lesions. DAPT, a γ-secretase inhibitor, blocks Notch signaling to suppress abnormal vascular proliferation. These agents exhibit synergistic multi-pathway anti-angiogenic effects in preclinical models and early-phase clinical trials, offering critical insights for advancing drug development and clinical translation in ROP management.
Retinopathy of Prematurity/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Infant, Newborn
;
Vascular Endothelial Growth Factor A/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Oxidative Stress/drug effects*
;
Fatty Acids, Omega-3/therapeutic use*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Receptors, Notch/metabolism*
;
Angiogenesis Inhibitors/therapeutic use*
;
Insulin-Like Growth Factor I/therapeutic use*
3.Therapeutic effect of concentrated growth factors combined with self-curing calcium phosphate cement on periodontal intrabony defects: Clinical and radiographic evaluation.
Xinying WANG ; Xueyuan CHENG ; Yong ZHANG ; Fei LI ; Jinyu DUAN ; Jing QIAO
Journal of Peking University(Health Sciences) 2025;57(1):42-50
OBJECTIVE:
To clarify the role of concentrated growth factors (CGF) in the treatment of periodontal cement defects using calcium phosphate cement (CPC) with self-curing properties.
METHODS:
Thirty-six intrabony defects were randomly divided into two groups. The experimental group received CGF+CPC treatment (n=18), while the control group received CPC treatment alone (n=18). The probing depth, clinical attachment loss, and hard tissue filling as measured by cone beam CT (CBCT) were evaluated at baseline and 1 year postoperatively in both groups, and the levels of major growth factors in CGF and serum were compared [platelet-derived growth factor-BB (PDGF-BB), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF)].
RESULTS:
At baseline, there were no statistically significant differences in probing depth, clinical attachment loss and CBCT measurements between the two groups (P>0.05). At 1 year postoperatively, significant improvements were observed in parameters mentioned above in both groups (P < 0.05). The CGF+CPC group seemed more effective compared with the CPC group in reduction of probing depth [(4.5±1.3) mm vs. (3.2±1.1) mm] and clinical attachment gain [(3.8±0.9) mm vs. (2.0±0.5) mm, P < 0.05]. Compared with the group treated with CPC alone, the hard tissue filling degree shown by CBCT in the CGF+CPC group was significantly increased [the reduction of the depth of the intrabony defects was (3.9±1.2) mm vs. (2.1±0.7) mm, respectively, P < 0.01]. At 1 year post-operatively, the volume of the intrabony defects shown by CBCT in the CGF+CPC group was reduced by (0.031 8±0.004 1) mL, which was significantly more than that in the CPC group [(0.019 7±0.001 2) mL, P < 0.05]. In addition, the concentration of the main growth factors (PDGF-BB, TGF-β1, IGF-1, and VEGF) in CGF were higher than those in serum (P < 0.001).
CONCLUSION
After 1 year of follow-up, the results of the present study indicated that CGF could significantly improve the clinical and radiological effects of CPC on the treatment of periodontal intrabony defects.
Humans
;
Calcium Phosphates/therapeutic use*
;
Male
;
Female
;
Bone Cements/therapeutic use*
;
Middle Aged
;
Cone-Beam Computed Tomography
;
Alveolar Bone Loss/therapy*
;
Becaplermin
;
Adult
;
Insulin-Like Growth Factor I
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Proto-Oncogene Proteins c-sis/blood*
;
Transforming Growth Factor beta1/blood*
;
Vascular Endothelial Growth Factor A/blood*
4.Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke.
Bing-Qiao WANG ; Yang-Ying DUAN ; Mao CHEN ; Yu-Fan MA ; Ru CHEN ; Cheng HUANG ; Fei GAO ; Rui XU ; Chun-Mei DUAN
Neuroscience Bulletin 2025;41(9):1522-1536
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Animals
;
Nitric Oxide Synthase Type III/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Integrin alpha6/genetics*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Stroke/pathology*
;
Vascular Remodeling/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Mice, Knockout
;
Signal Transduction/physiology*
;
Mice, Inbred C57BL
;
Male
;
Neovascularization, Physiologic/physiology*
5.Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair.
Han XU ; Si-Cong XU ; Li-Yan LI ; Yu-Huang WU ; Yin-Feng TAN ; Long CHEN ; Pei LIU ; Chang-Fu LIANG ; Xiao-Ning HE ; Yong-Hui LI
Chinese journal of integrative medicine 2024;30(3):243-250
OBJECTIVE:
To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.
METHODS:
Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.
RESULTS:
DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).
CONCLUSIONS
DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
Mice
;
Male
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Lipopolysaccharides
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Interleukin-1beta/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Claudin-5/metabolism*
;
Acute Lung Injury/chemically induced*
;
Lung/pathology*
;
Interleukin-6/metabolism*
;
Drugs, Chinese Herbal
6.Xinfeng Capsule alleviates RA-FLS-induced angiogenesis in HUVEC cells by inhibiting the lncRNA HOTAIR/PI3K/AKT pathway.
Feifei LIU ; Yuan WANG ; Jian LIU ; Chuanbing HUANG ; Dan HUANG ; Yanqiu SUN
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1057-1066
Objective To investigate the effect of serum containing Xinfeng capsule (XFC) on the angiogenesis of human umbilical vein endothelial cells (HUVEC) induced by rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its mechanism of action. Methods An in vitro co-culture model of RA-FLS and HUVEC was established. Serum containing XFC was prepared by oral gavage of SD rats. CCK-8 was used to screen the optimal co-culture ratio and XFC serum concentration. The lncRNA HOTAIR overexpression plasmid (pcDNA3.1-lncRNA HOTAIR), along with the negative control group, were constructed and transfected into RA-FLS. The experiments were done in HUVEC control group, model group (co-culture of HUVEC and RA-FLS), XFC group (co-culture of RA-FLS treated with 200 mL/L XFC), HOTAIR negative control group (co-culture of RA-FLS transfected with pcDNA3.1-NC), HOTAIR overexpression group (co-culture of RA-FLS transfected with pcDNA3.1-lncRNA HOTAIR), and XFC-treated HOTAIR overexpression group (co-culture of RA-FLS transfected with pcDNA3.1-lncRNA HOTAIR and treated with 200 mL/L XFC). The proliferation ability of HUVEC was detected by CCK-8 method. The migration ability of HUVEC was detected by TranswellTM method. The tube formation ability of HUVEC was detected by tubule formation assay. The expression of CD34 and CD105 in HUVEC was detected by flow cytometry. The expressions of lncRNA HOTAIR, miR-126-3p, phosphatidylinositol 3-kinase (PI3K), PI3K receptor 2 (PIK3R2), AKT, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) mRNA in HUVEC were detected by real-time quantitative PCR. The protein expressions of PI3K, AKT, p-AKT, VEGF, and bFGF in HUVEC were detected by Western blot and immunofluorescence technique. Results The results of CCK-8 method showed that the optimal treatment ratio and time of RA-FLS and HUVEC co-culture were 5:1 and 48 h respectively. The optimal intervention concentration and time of XFC were 200 mL/L and 48 h. Compared with the control group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVEC in the model group were significantly improved, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly upregulated, and miR-126-3p was significantly downregulated. Compared with the model group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVEC in the XFC group were significantly decreased, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly downregulated, while the expression of miR-126-3p was significantly upregulated. Compared with the HOTAIR negative control group, in the HOTAIR overexpression group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVECs were significantly increased, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly upregulated, and the expression of miR-126-3p was significantly downregulated. Compared with the HOTAIR overexpression group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVECs in the HOTAIR overexpression group treated with XFC were significantly downregulated, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly downregulated, and the expression of miR-126-3p was significantly upregulated. Conclusion XFC-containing serum may play a therapeutic role by inhibiting the expression of lncRNA HOTAIR/PI3K/AKT pathway, reducing the expression levels of VEGF and bFGF, and alleviating synovial angiogenesis induced by RA-FLS to exert therapeutic effect.
RNA, Long Noncoding/metabolism*
;
Humans
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Animals
;
Signal Transduction
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Rats, Sprague-Dawley
;
Neovascularization, Pathologic/metabolism*
;
Coculture Techniques
;
Cell Proliferation/genetics*
;
Fibroblasts/metabolism*
;
Vascular Endothelial Growth Factor A/genetics*
;
Male
;
Cells, Cultured
;
Capsules
;
Angiogenesis
7.Therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma in treatment of gastric ulcer based on network pharmacology and animal experiment.
Jing-Xian FANG ; Lian ZHANG ; Jing LI ; Han-Rui ZHANG ; Dan LIU ; Jing NIE ; Xiao-Chuan YE
China Journal of Chinese Materia Medica 2023;48(16):4446-4458
The present study aimed to explore the therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma in the treatment of gastric ulcer by network pharmacology and animal experiments. UPLC-Q-TOF-MS/MS was employed to chara-cterize the chemical components of non-polysaccharide fraction of Bletillae Rhizoma, and the common targets of Bletillae Rhizoma and gastric ulcer were screened out by network pharmacology. The "drug-component-target-disease" network was constructed. Protein-protein interaction(PPI) network was established by STRING. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed based on Matescape database to predict the therapeutic effect and mechanism of Bletillae Rhizoma. Finally, the gastric ulcer model was induced in mice by alcohol to verify the therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma on gastric ulcer. Forty-seven chemical components were identified from non-polysaccharide fraction of Bletillae Rhizoma, among which gymnoside Ⅰ, gymnoside Ⅱ, militarine, bletilloside A, and shancigusin I might be the main active components of non-polysaccharide fraction of Bletillae Rhizoma against gastric ulcer. PPI network analysis revealed core targets such as albumin(ALB), serine/threonine kinase 1(AKT1), tumor necrosis factor(TNF), and epidermal growth factor receptor(EGFR). The KEGG enrichment analysis showed that non-polysaccharide fraction of Bletillae Rhizoma mainly exerted the therapeutic effect by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, and Ras signaling pathway. The results of animal experiments showed that non-polysaccharide fraction of Bletillae Rhizoma could significantly improve alcohol-induced ulceration in mice to increase ulcer inhibition rate, decrease the levels of TNF-α, interleukin(IL)-1β, IL-6, vasoactive intestinal peptide(VIP), and thromboxane B2(TXB2), elevated the le-vels of IL-10, prostaglandin E2(PGE2), epidermal growth factor(EGF), and vascular endothelial growth factor(VEGF), down-re-gulate the protein levels of PI3K and AKT, and up-regulate the protein levels of p-PI3K and p-AKT. This study indicates that Bletillae Rhizoma may play a role in the treatment of gastric ulcer through multiple components, targets, and pathways and verifies partial prediction results of network pharmacology. The findings of this study provide a scientific and experimental basis for clinical application.
Animals
;
Mice
;
Stomach Ulcer/drug therapy*
;
Proto-Oncogene Proteins c-akt
;
Animal Experimentation
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Tandem Mass Spectrometry
;
Vascular Endothelial Growth Factor A
;
Tumor Necrosis Factor-alpha
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/pharmacology*
8.Mechanism of Zhongfeng Xingnao Decoction in improving microcirculatory disorders in cerebral hemorrhage based on network pharmacology and molecular docking techniques.
Xiao-Qin ZHONG ; Da-Feng HU ; Yu WANG ; Zhen-Qiu NING ; Min-Zhen DENG
China Journal of Chinese Materia Medica 2023;48(22):6115-6127
This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.
Animals
;
Mice
;
Tumor Suppressor Protein p53
;
Proto-Oncogene Proteins c-akt
;
Molecular Docking Simulation
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Microcirculation
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor Necrosis Factor-alpha
;
ErbB Receptors
;
Cerebral Hemorrhage/drug therapy*
;
Neoplasms
;
Phosphatidylinositols
;
Drugs, Chinese Herbal/pharmacology*
9.Improvement effect of Shegan Mahuang Decoction on rats with cold-induced asthma based on TRPV1/NRF-1/mtTFA pathway.
Qiu-Hui LI ; Xiao-Xiao SHAN ; Xiao-Ying LIU ; Wei-Dong YE ; Ya-Mei YUAN ; Xun-Yan YIN ; Xiang-Ming FANG
China Journal of Chinese Materia Medica 2023;48(23):6414-6422
This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.
Rats
;
Male
;
Animals
;
Mice
;
Interleukin-4/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Rats, Sprague-Dawley
;
Asthma/genetics*
;
Lung
;
Bronchoalveolar Lavage Fluid
;
RNA, Messenger/metabolism*
;
Collagen/metabolism*
;
Mucins/therapeutic use*
;
Ovalbumin
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
TRPV Cation Channels/metabolism*
;
Drugs, Chinese Herbal
10.Kunxian Capsule Extract Inhibits Angiogenesis in Zebrafish Embryos via PI3K/AKT-MAPK-VEGF Pathway.
Rui-Jiao MA ; Maharajan KANNAN ; Qing XIA ; Shan-Shan ZHANG ; Peng-Fei TU ; Ke-Chun LIU ; Yun ZHANG
Chinese journal of integrative medicine 2023;29(2):137-145
OBJECTIVE:
To investigate the anti-angiogenic activity of Kunxian Capsule (KX) extract and explore the underlying molecular mechanism using zebrafish.
METHODS:
The KX extract was prepared with 5.0 g in 100 mL of 40% methanol followed by ultrasonication and freeze drying. Freeze dried KX extract of 10.00 mg was used as test stock solution. Triptolide and icariin, the key bioactive compounds of KX were analyzed using ultra-high performance liquid chromatography. The transgenic zebrafish Tg(flk1:GFP) embryos were dechorionated at 20-h post fertilization (hpf) and treated with PTK 787, and 3.5, 7, 14 and 21 µg/mL of KX extract, respectively. After 24-h post exposure (hpe), mortality and malformation (%), intersegmental vessels (ISV) formation, and mRNA expression level of angiogenic pathway genes including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) were determined. Further, the embryos at 72 hpf were treated with KX extract to observe the development of sub-intestinal vein (SIV) after 24 hpe.
RESULTS:
The chromatographic analysis of test stock solution of KX extract showed that triptolide and icariin was found as 0.089 mg/g and 48.74 mg/g, respectively, which met the requirements of the national drug standards. In zebrafish larvae experiment, KX extract significantly inhibited the ISV (P<0.01) and SIV formation (P<0.05). Besides, the mRNA expression analysis showed that KX extract could significantly suppress the expressions of PI3K and AKT, thereby inhibiting the mRNA levels of ERKs and MAPK. Moreover, the downstream signaling cascade affected the expression of VEGF and its receptors (VEGFR and VEGFR-2). FGF-2, a strong angiogenic factor, was also down-regulated by KX treatment in zebrafish larvae.
CONCLUSION
KX extract exhibited anti-angiogenic effects in zebrafish embryos by regulating PI3K/AKT-MAPK-VEGF pathway and showed promising potential for RA treatment.
Animals
;
Fibroblast Growth Factor 2
;
Human Umbilical Vein Endothelial Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Zebrafish

Result Analysis
Print
Save
E-mail