1.Clinical efficacy of clear aligner treatment for pathologically migrated teeth in the anterior region of patients with severe periodontitis.
Jingqian LI ; Zilu ZHU ; Jian JIAO ; Jie SHI
Journal of Peking University(Health Sciences) 2025;57(1):51-56
OBJECTIVE:
To evaluate the clinical efficacy of clear aligner therapy in patients with severe periodontitis accompanied by pathological tooth displacement in the anterior region.
METHODS:
This retrospective study analyzed patients diagnosed with severe periodontitis and pathological displacement in the anterior region, who visited both the Periodontics and Orthodontics Departments at Peking University School and Hospital of Stomatology between 2019 and 2022. A total of 26 eligible cases were included in this study. All the patients underwent regular periodontal maintenance throughout the treatment process, and clear aligners were used for orthodontic treatment. Intraoral scans were analyzed by dedicated software to measure and compare occlusal distribution and proximal contact scores before and after orthodontic treatment. Periodontal clinical indicators were assessed at three key time points: before periodontal treatment (T0), before orthodontic treatment (T1), and after orthodontic treatment (T2). All the cases were treated with clear aligner.
RESULTS:
A total of 217 pathologically displaced anterior teeth from 26 patients were analyzed. Among these, 105 teeth exhibited periodontal pockets [probing depth (PD) ≥5 mm] before periodontal treatment. After clear aligner therapy, the occlusal score improved significantly from 10.35±8.61 to 23.62±9.73 (P < 0.001), and the proximal contact score increased from 13.62±4.73 to 31.62±10.37 (P < 0.001). The median PD decreased significantly from 3.33 mm [interquartile range (IQR)=0.92] at T0 to 2.50 mm (IQR=0.67, P < 0.001) at T1 and remained stable at 2.50 mm (IQR=0.50) after treatment (T2). A significant reduction in PD was observed between T0 and T2 (P < 0.001), but no significant difference was found between T1 and T2 (P=0.948).
CONCLUSION
Clear aligner therapy demonstrates favorable clinical efficacy in patients with severe periodontitis and pathological anterior tooth displacement. It effectively improves occlusal distribution and proximal contact while maintaining periodontal health in these patients. However, further large-scale prospective controlled studies are needed to verify its long-term clinical outcomes.
Humans
;
Retrospective Studies
;
Periodontitis/therapy*
;
Female
;
Male
;
Adult
;
Tooth Migration/therapy*
;
Tooth Movement Techniques/methods*
;
Treatment Outcome
;
Middle Aged
;
Young Adult
;
Orthodontic Appliances, Removable
2.Expert consensus on the clinical strategies for orthodontic treatment with clear aligners.
Yan WANG ; Hu LONG ; Zhihe ZHAO ; Ding BAI ; Xianglong HAN ; Jun WANG ; Bing FANG ; Zuolin JIN ; Hong HE ; Yuxin BAI ; Weiran LI ; Min HU ; Yanheng ZHOU ; Hong AI ; Yuehua LIU ; Yang CAO ; Jun LIN ; Huang LI ; Jie GUO ; Wenli LAI
International Journal of Oral Science 2025;17(1):19-19
Clear aligner treatment is a novel technique in current orthodontic practice. Distinct from traditional fixed orthodontic appliances, clear aligners have different material features and biomechanical characteristics and treatment efficiencies, presenting new clinical challenges. Therefore, a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique. This expert consensus discusses case selection and grading of treatment difficulty, principle of clear aligner therapy, clinical procedures and potential complications, which are crucial to the clinical success of clear aligner treatment.
Humans
;
Consensus
;
Orthodontic Appliance Design
;
Orthodontic Appliances, Removable
;
Tooth Movement Techniques/methods*
;
Malocclusion/therapy*
;
Orthodontics, Corrective/instrumentation*
3.Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription.
Zhichun JIN ; Hao XU ; Weiye ZHAO ; Kejia ZHANG ; Shengnan WU ; Chuanjun SHU ; Linlin ZHU ; Yan WANG ; Lin WANG ; Hanwen ZHANG ; Bin YAN
International Journal of Oral Science 2025;17(1):28-28
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2; R26GFP lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6f/f; CX3CR1CreERT2 mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfα promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting Tnfα transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
Animals
;
Mice
;
Macrophages/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
;
Tooth Movement Techniques/methods*
;
Activating Transcription Factor 6/metabolism*
;
Bone Remodeling
;
Flow Cytometry
;
Blotting, Western
4.Expert consensus on orthodontic treatment of patients with periodontal disease.
Wenjie ZHONG ; Chenchen ZHOU ; Yuanyuan YIN ; Ge FENG ; Zhihe ZHAO ; Yaping PAN ; Yuxing BAI ; Zuolin JIN ; Yan XU ; Bing FANG ; Yi LIU ; Hong HE ; Faming CHEN ; Weiran LI ; Shaohua GE ; Ang LI ; Yi DING ; Lili CHEN ; Fuhua YAN ; Jinlin SONG
International Journal of Oral Science 2025;17(1):27-27
Patients with periodontal disease often require combined periodontal-orthodontic interventions to restore periodontal health, function, and aesthetics, ensuring both patient satisfaction and long-term stability. Managing these patients involving orthodontic tooth movement can be particularly challenging due to compromised periodontal soft and hard tissues, especially in severe cases. Therefore, close collaboration between orthodontists and periodontists for comprehensive diagnosis and sequential treatment, along with diligent patient compliance throughout the entire process, is crucial for achieving favorable treatment outcomes. Moreover, long-term orthodontic retention and periodontal follow-up are essential to sustain treatment success. This expert consensus, informed by the latest clinical research and practical experience, addresses clinical considerations for orthodontic treatment of periodontal patients, delineating indications, objectives, procedures, and principles with the aim of providing clear and practical guidance for clinical practitioners.
Humans
;
Consensus
;
Orthodontics, Corrective/standards*
;
Periodontal Diseases/complications*
;
Tooth Movement Techniques/methods*
;
Practice Guidelines as Topic
5.Relationship between fluid shear stress in alveolar bone under orthodontic forces and bone remodeling rate.
Bin WU ; Kexin HU ; Fan YANG ; Yi LU ; Di JIANG ; Yang YI ; Bin YAN
West China Journal of Stomatology 2025;43(2):190-196
OBJECTIVES:
This study explores the differences in fluid flow within alveolar cancellous bone at various sites under orthodontic forces and elucidates the relationship between fluid shear stress and bone remodeling. These fin-dings lay the groundwork for understanding the biomechanical mechanisms of orthodontic tooth movement.
METHODS:
Stress relaxation tests were performed on human alveolar bone samples to determine material parameters by using the Prony series. An inverse model of alveolar bone was then developed for numerical simulations of fluid-structure interactions to calculate fluid flow within cancellous bone. Meanwhile, a rat model of tooth movement was established to investigate variations in bone remodeling speeds across different regions.
RESULTS:
The microstructural distribution of cancellous alveolar bone was similar in humans and rats. The bone volume fraction and trabecular thickness gradually decreased from root cervical region to root apical region, while the trabecular space gradually increased. Under the influence of orthodontic forces, fluid shear stress within cancellous bone showed spatial variability across different levels, with the highest shear stress occurring at the root apical region, ranging from 0 to 0.936 6 Pa. Additionally, the rat model of tooth movement indicated that bone remodeling occurred more rapidly at the root apical region.
CONCLUSIONS
Fluid stimulation has a remarkable effect on al-veolar bone remodeling, causing changes in the structure of alveolar bone and ultimately regulating the speed of structu-ral remodeling.
Bone Remodeling
;
Animals
;
Tooth Movement Techniques
;
Rats
;
Alveolar Process/physiology*
;
Stress, Mechanical
;
Humans
;
Biomechanical Phenomena
;
Cancellous Bone/physiology*
;
Shear Strength
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
7.NFATc1 and RUNX2 expression on orthodontic tooth movement with gradually increasing force
I Gusti Aju Wahju Ardani ; Ndhuk Ratih Mustiqo Hati ; Erdiarti Dyah Wahyuningtyas
Acta Medica Philippina 2024;58(14):86-93
Background:
Orthodontic tooth movement occurs due to bone resorption and apposition on the pressure and tension side of the PDL. The transcription factors associated with osteoclast differentiation are NFATc1 while osteoblast differentiation is associated with RUNX2. The optimum force of orthodontic tooth movement can move the teeth to the desired position, without causing discomfort and tissue damage to the patient.
Objective:
This study aims to analyse the effect of gradually increasing force on orthodontic tooth movement (by evaluating the NFATc1 and RUNX2 expression) in rats.
Methods:
This research is an in vivo experimental study with a post-test control group design. Twenty-eight healthy male adult Wistar rats (Rattus novergicus) aged 4-5 months with body weights 200-250 g rats were divided into seven study groups. Treatment groups in this study are given the force (by applying a closed coil spring between the maxillary central incisor and the maxillary first molar) of 5 g, 5-10 g, 10 g, and 10-20 g with the duration of treatment in 14 and 28 days. After the treatment day was finished, the alveolar bone tissue was isolated and investigated by immunohistochemical methods.
Results:
Indicate a significant difference between the control and all treatment groups of NFATc1 (p=0.003; p=0.000; p:0.010; p=0.001; p=0.001; p=0.000) and RUNX2 with groups of 10 g/14 days, 10 g/28 days, 5 g/28 days, 10 g/14 days,10-20 g/28 days (p=0.001; p=0.000; p=0.000; p=0.017; p=0.014; p=0.000) values.
Conclusion
Gradually increasing force affects orthodontic tooth movement by inducing bone resorption (high expression of NFATc1) in the pressure area and bone apposition (high expression of RUNX2) in the tension area. Applying heavy force by initially applying light force could inhibit hyalinization.
Orthodontic Tooth Movement
;
Tooth Movement Techniques
8.RANKL+ senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics.
Yue ZHOU ; Aki NISHIURA ; Hidetoshi MORIKUNI ; Wenqi DENG ; Toru TSUJIBAYASHI ; Yoshihiro MOMOTA ; Yuki AZETSU ; Masamichi TAKAMI ; Yoshitomo HONDA ; Naoyuki MATSUMOTO
International Journal of Oral Science 2023;15(1):20-20
In dentistry, orthodontic root resorption is a long-lasting issue with no effective treatment strategy, and its mechanisms, especially those related to senescent cells, remain largely unknown. Here, we used an orthodontic intrusion tooth movement model with an L-loop in rats to demonstrate that mechanical stress-induced senescent cells aggravate apical root resorption, which was prevented by administering senolytics (a dasatinib and quercetin cocktail). Our results indicated that cementoblasts and periodontal ligament cells underwent cellular senescence (p21+ or p16+) and strongly expressed receptor activator of nuclear factor-kappa B (RANKL) from day three, subsequently inducing tartrate-resistant acid phosphatase (TRAP)-positive odontoclasts and provoking apical root resorption. More p21+ senescent cells expressed RANKL than p16+ senescent cells. We observed only minor changes in the number of RANKL+ non-senescent cells, whereas RANKL+ senescent cells markedly increased from day seven. Intriguingly, we also found cathepsin K+p21+p16+ cells in the root resorption fossa, suggesting senescent odontoclasts. Oral administration of dasatinib and quercetin markedly reduced these senescent cells and TRAP+ cells, eventually alleviating root resorption. Altogether, these results unveil those aberrant stimuli in orthodontic intrusive tooth movement induced RANKL+ early senescent cells, which have a pivotal role in odontoclastogenesis and subsequent root resorption. These findings offer a new therapeutic target to prevent root resorption during orthodontic tooth movement.
Rats
;
Animals
;
Root Resorption/prevention & control*
;
Senotherapeutics
;
Stress, Mechanical
;
Dasatinib/pharmacology*
;
Quercetin/pharmacology*
;
Osteoclasts
;
Tooth Movement Techniques
;
Periodontal Ligament
;
RANK Ligand
9.Three-dimensional finite element study of mandibular first molar distalization with clear aligner.
Fujia KANG ; Lei YU ; Qi ZHANG ; Xinpeng LI ; Zhiqiang HU ; Xianchun ZHU
West China Journal of Stomatology 2023;41(4):405-413
OBJECTIVES:
This study aimed to construct the finite element model of the mandibular first molar with the invisible appliance and explore the dentition movement characteristics of the mandibular first molar when using micro-implant anchorage and different initial positions of the first molar.
METHODS:
Models of the mandible, tooth, periodontal membrane, and invisible appliance were constructed using cone beam computed tomography (CBCT) data. The two groups were divided into the non-anchorage group and the micro-implant group (between the roots of the first molar and the second molar) based on whether the elastic traction of the micro-implant was assisted or not. The two groups were divided into the following conditions based on the starting position of the first molar: Working condition 1: the distance between the first molar and the second premolar was 0 mm; working condition 2: the distance between the first molar and the second premolar was 1 mm; working condition 3: the distance between the first molar and the second premolar was 2 mm; working condition 4: the distance between the first molar and the second premolar was 3 mm. The data characte-ristics of total displacement and displacement in each direction of dentition were analyzed.
RESULTS:
In the non-ancho-rage group, all the other teeth showed reverse movement except for the first molar which was moved distally. Meanwhile, in the micro-implant group, except for a small amount of mesial movement of the second molar in wor-king condition 1, the whole dentition in other working conditions presented distal movement and anterior teeth showed lingual movement, among which the distal displacement of the first molar in working condition 4 was the largest. With the change of the initial position of the first molar to the distal, the movement of the first molar to the distal, the premolar to the mesial, and the anterior to the lip increased, while the movement of the second molar to the mesial decreased.
CONCLUSIONS
The micro-implant can effectively protect the anterior anchorage, increase the expression rate of molar distancing, and avoid the round-trip movement of the second molar. The initial position of the first molar movement is related to the amount of distancing and the remaining tooth movement.
Finite Element Analysis
;
Molar
;
Bicuspid
;
Periodontal Ligament
;
Tooth Movement Techniques/methods*
;
Orthodontic Appliances, Removable
10.Experimental study of subcutaneous adipose-derived stem cells inhibiting orthodontic root resorption.
Dan ZHANG ; Chunxian YANG ; Peng XU ; Nana TANG ; Shune XIAO ; Jiangtao ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(12):1533-1540
OBJECTIVE:
To investigate the effect of human subcutaneous adipose-derived stem cells (hADSCs) local transplantation on orthodontically induced root resorption (OIRR) and provide theoretical and experimental basis for the clinical application of hADSCs to inhibit OIRR.
METHODS:
Forty 8-week-old male Sprague Dawley rats were randomly divided into experimental group and control group, with 20 rats in each group, to establish the first molar mesial orthodontic tooth movement (OTM) model of rat right maxillary. The rats in the experimental group were injected with 25 μL of cell suspension containing 2.5×10 5 hADSCs on the 1st, 4th, 8th, and 12th day of modeling, while the rats in the control group were injected with 25 μL of PBS. The rat maxillary models were obtained before and after 7 and 14 days of force application, and 10 rats in each group were killed and sampled after 7 and 14 days of force application. The OTM distance was measured by stereomicroscope, the root morphology of the pressure side was observed by scanning electron microscope and the root resorption area ratio was measured. The root resorption and periodontal tissue remodeling of the pressure side were observed by HE staining and the root resorption index was calculated. The number of cementoclast and osteoclast in the periodontal tissue on the pressure side was counted by tartrate resistant acid phosphatase staining.
RESULTS:
The TOM distance of both groups increased with the extension of the force application time, and there was no significant difference ( P<0.05). There was no significant difference in OTM distance between the experimental group and the control group after 7 and 14 days of force application ( P>0.05). Scanning electron microscope observation showed that small and shallow scattered resorption lacunae were observed on the root surface of the experimental group and the control group after 7 days of force application, and there was no significant difference in the root resorption area ratio between the two groups ( P>0.05); after 14 days of application, the root resorption lacunae deepened and became larger in both groups, and the root resorption area ratio in the experimental group was significantly lower than that in the control group ( P<0.05). The range and depth of root absorption in the experimental group were smaller and shallower than those in the control group, and the root absorption index in the experimental group was significantly lower than that in the control group after 14 days of force application ( P<0.05). The number of cementoclast in the experimental group was significantly lower than that in the control group after 7 and 14 days of force application ( P<0.05); the number of osteoclasts in the experimental group was significantly lower than that in the control group after 14 days of force application ( P<0.05).
CONCLUSION
Local transplantation of hADSCs may reduce the area and depth of root resorption by reducing the number of cementoclasts and osteoclasts during OTM in rats, thereby inhibiting orthodontic-derived root resorption.
Rats
;
Male
;
Humans
;
Animals
;
Root Resorption/therapy*
;
Rats, Sprague-Dawley
;
Osteoclasts
;
Tooth Movement Techniques
;
Stem Cells


Result Analysis
Print
Save
E-mail