1.Erk Signaling Pathway in Striatal D2-MSNs: an Essential Pathway for Exercise-induced Improvement in Parkinson’s Disease
Bo GAO ; Yi-Ning LAI ; Yi-Tong GE ; Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):61-71
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc), primarily manifesting as motor dysfunctions such as resting tremor, muscle rigidity, and bradykinesia. According to the classical model of basal ganglia motor control, approximately half of the medium spiny neurons (MSNs) in the striatum are D1-MSNs, which constitute the direct pathway. These neurons express D1-dopamine receptor (D1R) and substance P, and they mainly participate in the selection, initiation, and execution of movements. The other half are D2-MSNs, which constitute the indirect pathway. These neurons express D2-dopamine receptor (D2R) and adenosine 2A receptors and are involved in inhibiting unnecessary movements or terminating ongoing movements, thereby adjusting movement sequences to perform more precise motor behaviors. The direct pathway in the striatum modulates the activity of motor cortex neurons by exciting D1-MSNs through neurotransmitters such as glutamate (Glu), allowing the motor cortex to send signals more freely to the motor system, thus facilitating the generation and execution of specific motor behaviors. Studies using D1-Cre and D2-Cre mice with neurons labeled for D1R and D2R have shown that both types of neurons are involved in the execution of movements, with D1-MSNs participating in movement initiation and D2-MSNs in inhibiting actions unrelated to the target movement. These findings suggest that the structural and functional plasticity of D1-MSNs and D2-MSNs in the basal ganglia circuitry enables motor learning and behavioral regulation. Additionally, when SNpc DA neurons begin to degenerate, D1-MSNs are initially affected but do not immediately cause motor impairments. In contrast, when D2-MSNs undergo pathological changes, they are first activated by upstream projecting neurons, leading to the inhibition of most motor behaviors and resulting in motor dysfunction. Therefore, it is hypothesized that motor impairments such as bradykinesia and initiation difficulties are more closely related to the functional activity of D2-MSNs. The extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) signaling pathway has been identified as a critical modulator in the pathophysiology of PD. Recent findings indicate that Erk/MAPK signaling pathway can mediate DA and Glu signaling in the central nervous system, maintaining normal functional activity of striatal MSNs and influencing the transmission of motor control signals. Within this complex regulatory network, the Erk/MAPK signaling pathway plays a key role in transmitting motor information to downstream neurons, regulating normal movements, avoiding unnecessary movements, and finely tuning motor behaviors. Our laboratory’s previous research found that 4 weeks of aerobic exercise intervention improved motor dysfunction in PD mice by inhibiting the Erk1/2 signaling upstream of striatal MSNs, primarily involving the Erk1/2 signaling in D2-MSNs rather than D1-MSNs. This review summarizes the neurobiological mechanisms of Erk/MAPK signaling pathway in D2-MSNs for the prevention and treatment of motor dysfunction in PD. By exploring the role of this signaling pathway in regulating motor abnormalities and preventing motor dysfunction in the central nervous system of PD, this review provides new theoretical perspectives for related mechanistic research and therapeutic strategies.
2.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
3.Aerobic Exercise Improves Cognitive Function of Aging Mice by Regulating Intestinal Flora-metabolite Network
An-Feng WANG ; Tong WU ; Hu ZHANG ; Ji-Ling LIANG ; Ning CHEN
Progress in Biochemistry and Biophysics 2025;52(6):1484-1498
ObjectiveThis study aimed to explore the effects of aerobic exercise on cognitive function in aging mice and to elucidate the underlying molecular mechanisms by which aerobic exercise ameliorates cognitive decline through the regulation of gut microbiota-metabolite network. By providing novel insights into the interplay between exercise, gut microbiota, and cognitive health, this research seeks to offer a robust theoretical foundation for developing anti-aging strategies and personalized exercise interventions targeting aging-related cognitive dysfunction. MethodsUsing naturally aged C57BL/6 mice as the experimental model, this study employed a multi-omics approach combining 16S rRNA sequencing and wide-targeted metabolomics analysis. A total of 18 mice were divided into 3 groups: young control (YC, 4-month-old), old control (OC, 21-month-old), and old+exercise (OE, 21-month-old with 12 weeks of moderate-intensity treadmill training) groups. Behavioral assessments, including the Morris water maze (MWM) test, were conducted to evaluate cognitive function. Histopathological examinations of brain tissue sections provided morphological evidence of neuronal changes. Fecal samples were collected for gut microbiota and metabolite profiling via 16S rRNA sequencing and ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS). Data were analyzed using a combination of statistical and bioinformatics tools to identify differentially abundant microbial taxa and metabolites and to construct interaction networks between them. ResultsBehavioral tests revealed that 12 weeks of aerobic exercise significantly improved spatial learning and memory capacity of aged mice, as evidenced by reduced escape latency and increased target area exploration and platform crossings in the MWM. Histopathological analysis demonstrated that exercise mitigated aging-related neuronal damage in the hippocampus, enhancing neuronal density and morphology. 16S rRNA sequencing indicated that exercise increased gut microbiota α‑diversity and enriched beneficial bacterial genera, including Bifidobacterium, Parabacteroides, and Rikenella. Metabolomics analysis identified 32 differentially regulated metabolites between OC and OE groups, with 94 up-regulated and 30 down-regulated in the OE group when compared with OC group. These metabolites were primarily involved in energy metabolism reprogramming (e.g., L-homocitrulline), antioxidant defense (e.g., L-carnosine), neuroprotection (e.g., lithocholic acid), and DNA repair (e.g., ADP-ribose). Network analysis further revealed strong positive correlations between specific bacteria and metabolites, such as Parabacteroides with ADP-ribose and Bifidobacterium with lithocholic acid, suggesting potential neuroprotective pathways mediated by the gut microbiota-metabolite axis. ConclusionThis study provides comprehensive evidence that aerobic exercise elicits cognitive benefits in aging mice by modulating the gut microbiota-metabolite network. These findings highlight three key mechanisms: (1) the proliferation of beneficial gut bacteria enhances metabolic reprogramming to boost DNA repair pathways; (2) elevated neuroinflammation-inhibiting factors reduce neurodegenerative changes; and (3) enhanced antioxidant defenses maintain neuronal homeostasis. These results underscore the critical role of the “microbiota-metabolite-brain” axis in mediating the cognitive benefits of aerobic exercise. This study not only advances our understanding of the gut-brain axis in aging but also offers a scientific basis for developing personalized exercise and probiotic-based interventions targeting aging-related cognitive decline. Future research should further validate these mechanisms in non-human primates and human clinical trials to establish the translational potential of exercise-induced gut microbiota-metabolite modulation for combating neurodegenerative diseases.
4.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
5.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
6.Injectable agents for the induction of Peyronie's disease in model rats: a comparative study.
Guang-Jun DU ; Si-Yan XING ; Ning WU ; Tong WANG ; Yue-Hui JIANG ; Tao SONG ; Bai-Bing YANG ; Yu-Tian DAI
Asian Journal of Andrology 2025;27(1):96-100
Peyronie's disease (PD) is a disorder characterized by fibrous plaque formation in the penile tissue that leads to curvature and complications in advanced stages. In this study, we aimed to compare four injectable induction agents for the establishment of a robust rat model of PD: transforming growth factor-β1 (TGF-β1), fibrin, sodium tetradecyl sulfate (STS) combined with TGF-β1, and polidocanol (POL) combined with TGF-β1. The results showed that injection of TGF-β1 or fibrin into the tunica albuginea induced pathological endpoints without causing penile curvature. The STS + TGF-β1 combination resulted in both histological and morphological alterations, but with a high incidence of localized necrosis that led to animal death. The POL + TGF-β1 combination produced pathological changes and curvature comparable to STS + TGF-β1 and led to fewer complications. In conclusion, fibrin, STS + TGF-β1, and POL + TGF-β1 all induced PD with a certain degree of penile curvature and histological fibrosis in rats. The POL + TGF-β1 combination offered comparatively greater safety and clinical relevance and may have the greatest potential for PD research using model rats.
Animals
;
Male
;
Penile Induration/drug therapy*
;
Rats
;
Transforming Growth Factor beta1/metabolism*
;
Disease Models, Animal
;
Fibrin
;
Penis/drug effects*
;
Polidocanol/administration & dosage*
;
Rats, Sprague-Dawley
;
Polyethylene Glycols/administration & dosage*
;
Injections
7.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
8.Efficacy of steam thermal ablation on the treatment of benign prostatic hyperplasia.
Ning SHAO ; Qi-Feng CAO ; Jian-Wei CAO ; Jian KANG ; Qiang BAI ; Xin-Gang CUI
National Journal of Andrology 2025;31(4):338-340
OBJECTIVE:
To explore the clinical application of transurethral steam thermal ablation of the prostate as an ultra-minimally invasive treatment of benign prostatic hyperplasia (BPH).
METHODS:
We treated 18 BPH patients by transurethral steam thermal ablation of the prostate in our hospital, and followed them up for 6-12 months after operation. We obtained the IPSS, maximum urinary flow rate (Qmax), IIEF-5 scores, Male Sexual Health Questionnaire-Ejaculatory Dysfunction-Short Form (MSHQ-EjD-SF) scores and quality of life (QOL) scores from the patients and compared them before and after surgery.
RESULTS:
Operations were successfully completed in all the cases, with no intraoperative complications, and all the patients were discharged on the second day after surgery. At the 6-month follow-up after surgery, the Qmax increased from (10.08 ± 2.06) ml/s before surgery to (7.51 ± 3.21) ml/s, the IPSS decreased from 23.72 ± 1.87 to 8.06 ± 1.39, and the QOL score decreased from 5.11 ± 0.58 before surgery to 1.28 ± 0.46. The differences in these indicators were statistically significant (P<0.05). And these is no significant difference in the MSHQ-EjD-SF and IIEF-5 score(P>0.05).
CONCLUSION
Transurethral steam thermal ablation of the prostate is a safe, effective and almost non-invasive surgical strategy for the treatment of BPH, with a good prospect of clinical application.
Humans
;
Male
;
Prostatic Hyperplasia/surgery*
;
Aged
;
Middle Aged
;
Treatment Outcome
;
Steam
;
Transurethral Resection of Prostate/methods*
;
Quality of Life
9.Nonsurgical Treatment of Chronic Subdural Hematoma Patients with Chinese Medicine: Case Report Series.
Kang-Ning LI ; Wei-Ming LIU ; Ying-Zhi HOU ; Run-Fa TIAN ; Shuo ZHANG ; Liang WU ; Long XU ; Jia-Ji QIU ; Yan-Ping TONG ; Tao YANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2025;31(10):937-941
10.Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study.
Yuanyue ZHU ; Linhui SHEN ; Yanan HUO ; Qin WAN ; Yingfen QIN ; Ruying HU ; Lixin SHI ; Qing SU ; Xuefeng YU ; Li YAN ; Guijun QIN ; Xulei TANG ; Gang CHEN ; Yu XU ; Tiange WANG ; Zhiyun ZHAO ; Zhengnan GAO ; Guixia WANG ; Feixia SHEN ; Xuejiang GU ; Zuojie LUO ; Li CHEN ; Qiang LI ; Zhen YE ; Yinfei ZHANG ; Chao LIU ; Youmin WANG ; Shengli WU ; Tao YANG ; Huacong DENG ; Lulu CHEN ; Tianshu ZENG ; Jiajun ZHAO ; Yiming MU ; Weiqing WANG ; Guang NING ; Jieli LU ; Min XU ; Yufang BI ; Weiguo HU
Frontiers of Medicine 2025;19(1):79-89
This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50-4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17-5.16), kidney cancer (aOR=2.04, 95% CI 1.05-3.94), and bladder cancer (aOR=2.23, 95% CI 1.01-5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12-2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29-4.49), colorectal cancer (aOR=1.83, 95% CI 1.18-2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11-6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.
Humans
;
Mendelian Randomization Analysis
;
Gallstones/complications*
;
Female
;
Male
;
Cholecystectomy/statistics & numerical data*
;
Middle Aged
;
Risk Factors
;
Aged
;
Adult
;
Neoplasms/etiology*
;
Stomach Neoplasms/epidemiology*

Result Analysis
Print
Save
E-mail