1.Curcumin promotes osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose environment by regulating HO-1
Xian-Ting WEI ; Bao-Kang CHEN ; Xin DONG ; Kang YAN ; Xiao-Ping ZHANG ; Bo LIAO
Journal of Regional Anatomy and Operative Surgery 2024;33(9):783-787
Objective To study the effect of curcumin on osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs)in high glucose condition and its mechanism.Methods The cultured hBMSCs were divided into the normal group,high glucose group,and high glucose+curcumin group.The early osteogenic differentiation level of the cells in each group was assessed by detecting alkaline phosphatase(ALP)activity.Alizarin red staining was used to evaluate the formation of mineralized nodules in the late stage of osteo-genic differentiation.The expression of osteogenic-related genes,including Runt-related transcription factor 2(Runx2),osteocalcin(OCN),and type Ⅰ collagen(COL-1),was detected by RT-PCR after 21 days of osteogenic induction.Western blot was used to detect the expression of heme oxygenase-1(HO-1)in each group.Furthermore,an HO-1 small interfering RNA(siRNA)model was constructed and its interference efficiency was assessed.The expression levels of osteogenesis-related proteins(Runx2,OCN,and COL-1)between the high glucose+curcumin group and high glucose+curcumin+siHO-1 group were compared.Results Compared with the normal group,the high glucose group showed decreased ALP activity,reduced formation of mineralized nodules,decreased expression of osteogenic-related genes(Runx2,OCN,and COL-1),and inhibited expression of HO-1(P<0.05).Compared with the empty vector group,the siHO-1 group showed significantly reduced expression of HO-1 in cells,indicating successful siRNA interference(P<0.01).Compared with the high glucose+curcumin group,the expression levels of osteogenesis-related proteins(OCN,COL-1,and Runx2)were all decreased in the high glucose+curcumin+siHO-1 group(P<0.05).Conclusion Curcumin can promote osteogenic differentiation of hBMSCs under high glucose environment,which is related to the expression of HO-1.
3.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
4.Real-world study of hand, foot and mouth disease vaccine
Mengjun LIAO ; Lingxian QIU ; Lu CHEN ; Yue HUANG ; Shoujie HUANG ; Tong CHENG ; Ting WU
Chinese Journal of Microbiology and Immunology 2024;44(6):553-559
Hand, foot and mouth disease (HFMD) is a common infectious disease among children, and has emerged as a substantial global public health concern, particularly in the Asia-Pacific region. It has a serious impact on children′s health and imposes a significant disease burden on families and society. Currently, there are three globally available HFMD vaccines (all of them are EV71 inactivated vaccine), which were first approved and marketed in China in 2016. Real-world studies have shown a decrease in the incidence, severity, and mortality rate of EV71-related HFMD, providing evidence of its effectiveness. Additionally, related data have indicated a significant change in the pathogen spectrum of HFMD in China in the post-vaccine era. This article aims to provide a comprehensive review of the safety, effectiveness and immune-persistence data of EV71 vaccine acquired through real-world studies.
5.The effectiveness of internet-based decision aids in colorectal cancer screening:A systematic review
Qian LIAO ; Yufeng YU ; Ting YAO ; Jiaxin LI ; Wei ZHOU
China Modern Doctor 2024;62(16):51-56
Objective To evaluate the effectiveness of internet-based decision aids(DA)in colorectal cancer screening.Methods Randomized controlled trials of efficacy of internet-based DA in colorectal cancer screening were searched by computer from CNKI,Wanfang Data,VIP,CBM,PubMed,the Cochrane Library,Embase and Web of Science.The retrieval period was from the establishment of the database to June 2023.Descriptive analysis was used to analyze the main contents and summarize their clinical application effects.Results A total of 12 literatures were included,including 6038 subjects,of which 3089 were in experimental group and 2949 were in control group.The results showed that the contents of internet-based DA mainly included basic information support,benefits and risks of colorectal cancer screening,and clarification of patients'personal values.It could help patients enhance screening willingness,improve informed decision-making ability,reduce decision-making conflicts,and promote the positive role of patients in decision-making.Patients have higher satisfaction with internet-based DA.Conclusion Internet-based DA has shown positive results in the application of colorectal cancer screening,and has unique advantages over the traditional paper version of the manual,but it still has certain limitations.In the future,we can learn from the relevant theoretical achievements of foreign decision-making assistance,research and develop a more comprehensive DA for colorectal cancer screening combined with China's national conditions.
7.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
9.Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation
Yue WANG ; Kaili HU ; Changdi LIAO ; Ting HAN ; Fenglin JIANG ; Zixin GAO ; Jinhua YAN
Tissue Engineering and Regenerative Medicine 2024;21(8):1203-1216
BACKGROUND:
Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown.
METHODS:
OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1b to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-a and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p.
RESULTS:
The expressions of SNHG7 and FSP1 were both reduced in IL-1b-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCsderived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCsExos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1b-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7.
CONCLUSIONS
Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1b-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
10.Research Progress of Microneedle Delivery System in the Treatment of Skin Tumors
Yiting LUO ; Ting YU ; Yue QIU ; Longfei LIAO ; Xue MA ; Hongtao XIAO ; Tingting QI
Herald of Medicine 2024;43(8):1235-1244
As an emerging drug delivery technology,microneedles can puncture the skin's stratum corneum to create micron-sized conduits,painlessly,minimally invasive,and efficiently deliver drugs into viable epidermis or dermis for local or systemic therapeutic effects.This paper reviews the current clinical trials of microneedles used in the treatment of various diseases,elaborates on the characteristics of various types of microneedles,and summarizes the latest research progress of microneedles used to treat skin tumors,including chemotherapy,photothermal and photodynamic therapy,immunotherapy,gene therapy,and combination therapy.This review provides ideas and directions for further research on microneedles in treating skin tumors.

Result Analysis
Print
Save
E-mail