1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
3.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
4.6-Week Caloric Restriction Improves Lipopolysaccharide-induced Septic Cardiomyopathy by Modulating SIRT3
Ming-Chen ZHANG ; Hui ZHANG ; Ting-Ting LI ; Ming-Hua CHEN ; Xiao-Wen WANG ; Zhong-Guang SUN
Progress in Biochemistry and Biophysics 2025;52(7):1878-1889
ObjectiveThe aim of this study was to investigate the prophylactic effects of caloric restriction (CR) on lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) and to elucidate the mechanisms underlying the cardioprotective actions of CR. This research aims to provide innovative strategies and theoretical support for the prevention of SCM. MethodsA total of forty-eight 8-week-old male C57BL/6 mice, weighing between 20-25 g, were randomly assigned to 4 distinct groups, each consisting of 12 mice. The groups were designated as follows: CON (control), LPS, CR, and CR+LPS. Prior to the initiation of the CR protocol, the CR and CR+LPS groups underwent a 2-week acclimatization period during which individual food consumption was measured. The initial week of CR intervention was set at 80% of the baseline intake, followed by a reduction to 60% for the subsequent 5 weeks. After 6-week CR intervention, all 4 groups received an intraperitoneal injection of either normal saline or LPS (10 mg/kg). Twelve hours post-injection, heart function was assessed, and subsequently, heart and blood samples were collected. Serum inflammatory markers were quantified using enzyme-linked immunosorbent assay (ELISA). The serum myocardial enzyme spectrum was analyzed using an automated biochemical instrument. Myocardial tissue sections underwent hematoxylin and eosin (HE) staining and immunofluorescence (IF) staining. Western blot analysis was used to detect the expression of protein in myocardial tissue, including inflammatory markers (TNF-α, IL-9, IL-18), oxidative stress markers (iNOS, SOD2), pro-apoptotic markers (Bax/Bcl-2 ratio, CASP3), and SIRT3/SIRT6. ResultsTwelve hours after LPS injection, there was a significant decrease in ejection fraction (EF) and fractional shortening (FS) ratios, along with a notable increase in left ventricular end-systolic diameter (LVESD). Morphological and serum indicators (AST, LDH, CK, and CK-MB) indicated that LPS injection could induce myocardial structural disorders and myocardial injury. Furthermore, 6-week CR effectively prevented the myocardial injury. LPS injection also significantly increased the circulating inflammatory levels (IL-1β, TNF-α) in mice. IF and Western blot analyses revealed that LPS injection significantly up-regulating the expression of inflammatory-related proteins (TNF-α, IL-9, IL-18), oxidative stress-related proteins (iNOS, SOD2) and apoptotic proteins (Bax/Bcl-2 ratio, CASP3) in myocardial tissue. 6-week CR intervention significantly reduced circulating inflammatory levels and downregulated the expression of inflammatory, oxidative stress-related proteins and pro-apoptotic level in myocardial tissue. Additionally, LPS injection significantly downregulated the expression of SIRT3 and SIRT6 proteins in myocardial tissue, and CR intervention could restore the expression of SIRT3 proteins. ConclusionA 6-week CR could prevent LPS-induced septic cardiomyopathy, including cardiac function decline, myocardial structural damage, inflammation, oxidative stress, and apoptosis. The mechanism may be associated with the regulation of SIRT3 expression in myocardial tissue.
5.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
6.Effect of knockdown of ARHGAP30 on proliferation and apoptosis of Siha cells
Ya-Ting PENG ; Duan LIU ; Jie MENG ; Wen-Chao LI ; Hui-Qi LI ; Hua GUO ; Mei-Lan NIU ; Qiao-Hong QIN
Chinese Pharmacological Bulletin 2024;40(5):847-853
Aim To investigate the changes in the proliferation and apoptosis of Siha cells after knocking down Rho GTPase-activating protein 30(ARHGAP30).Methods After designing specific shARHGAP30 primers and connecting them to the pLKO.1 vector,we transformed them into Escherichia coli competent cells,then co-transfecting them with lentiviral helper plasmids into HEK-293T cells.We collected and filtered cell supernatant to obtain the vi-rus to infect Siha cells.RT-qPCR and Western blot were used to detect knockdown efficiency,as well as changes in the expression of Bax and Bcl-2 after trans-fection.The CCK-8 method was employed to measure the proliferation level of cells after knockdown.Results After successful construction of a lentiviral plasmid with knockdown of the ARHGAP30 gene and establish-ment of stably transfected Siha cells,ARHGAP30 tran-scription and translation(P<0.01)in Siha cells de-creased,Bax/Bcl-2 significantly decreased(P<0.01),indicating decreased apoptosis and increased cell proliferation(P<0.01).Conclusions This study suggests the involvement of ARHGAP30 in the proliferation and apoptosis of Siha cells,and regulating the ARHGAP30 gene may interfere with the occurrence and development of cervical cancer.
7.A case of extracorporeal membrane oxygenation intubation assisted percutaneous coronary intervention through axillary artery approach
Zheng-Le YANG ; Cheng-Yi XU ; Dong YI ; Xiao-Die XU ; Dan SONG ; Ting LUO ; Hua YAN
Chinese Journal of Interventional Cardiology 2024;32(6):357-360
Veno-arterial extracorporeal membrane oxygenation is an effective method to reduce perioperative adverse events such as cardiogenic shock in patients undergoing complex high-risk indicated percutaneous coronary intervention.Femoral artery and femoral vein are the main routes for conventional veno-arterial extracorporeal membrane oxygenation in China,while the cases of extracorporeal membrane oxygenation insertion via axillary artery are relatively rare.However,the axillary artery intubation veno-arterial extracorporeal membrane oxygenation assisted mode has been regarded as one of the routine clinical paths for the treatment of critically ill patients in foreign countries.This paper reports a case of an elderly male patient who underwent high risk and complex percutaneous coronary interventional therapy by right axillary artery implantation with extracorporeal membrane oxygenation assisted circulation due to the difficulty of femoral artery approach.In order to provide reference for the selection of clinical extracorporeal membrane oxygenation technique route.
8.Interaction between glycosylated hemoglobin and dyslipidemia on peripheral neuropathy in patients with diabetes mellitus
Chinese Journal of Diabetes 2024;32(8):595-600
Objective To investigate the interaction between HbA1c level and dyslipidemia on diabetic peripheral neuropathy(DPN).Methods A total of 110 patients with DPN who were hospitalized in the Department of Endocrinology of the Third Affiliated Hospital of Soochow University were selected as the DPN group,and 110 patients with T2DM who were treated in the Third Affiliated Hospital of Soochow University during the same period were selected as the T2DM group from July 2020 to July 2021.LASSO regression and Logistic regression analysis were used to evaluate the influencing factors for T2DM patients complicated with DPN.The interaction of high HbA1c and dyslipidemia on DPN was analyzed by additive interaction model,and the diagnostic value of high HbA1c,dyslipidemia and their interaction on DPN was analyzed by ROC curve.Results The age,smoking history,SBP,WC,TG and HbA1c were higher in DPN group than in T2DM group(P<0.05).LASSO and logistic regression analysis showed that age,smoking history,SBP,WC,TG,HDL-C and HbA1c were the influencing factors for DPN in T2DM patients.The results of qualitative and quantitative analysis showed that there was an interaction between high HbA1c and dyslipidemia in DPN risk in patients with T2DM.ROC curve analysis showed that the diagnostic value of high HbA1c and dyslipidemia combination was higher in DPN diagnosis than each parameter alone.Conclusions TG,HDL-C and HbA1c are the influencing factors for DPN in T2DM patients,and there is a synergistic interaction.High HbA1c and dyslipidemia increase the risk of DPN in T2DM patients.
9.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
10.Sertraline hydrochloride combined with compound chamomile lidocaine gel for the treatment of premature ejaculation
Shu-Gen LI ; Shang GAO ; Zhen-Wei GU ; Dao-Hua ZHAO ; Jie JIANG ; Xiao-Ting LU ; Lan-Xiang LIU ; Hao-Ran LIU ; Ze CHEN
National Journal of Andrology 2024;30(9):809-812
Objective:To investigate the effect of sertraline hydrochloride combined with compound chamomile lidocaine gel in the treatment of premature ejaculation(PE).Methods:We selected 80 cases of PE treated in our hospital from June 2021 to May 2023 and equally randomized them into a control and an observation group,the former medicated with compound chamomile lidocaine gel while the latter with sertraline hydrochloride in addition,both for 6 weeks.We recorded and compared the intravaginal ejaculation latency time(IELT),the number of successful sexual intercourses per week,the Premature Ejaculation Diagnostic Tool(PEDT)scores,and the incidence of adverse reactions between the two groups of patients.Results:After the treatment,the IELT was signif-icantly longer([5.39±1.17]vs[2.49±0.73]min,P<0.05),the weekly number of successful sexual intercourses remarkably higher(1.82±0.45 vs 0.93±0.19,P<0.05)and the PEDT scores markedly lower(7.42±2.04 vs 9.85±2.36,P<0.05)in the observation than in the control group,but no statistically significant differences were observed in the baseline PEDT scores or the incidence of adverse reactions between the two groups(P>0.05).Conclusion:Sertraline hydrochloride combined with com-pound chamomile lidocaine gel is definitely effective in the treatment of PE,which can significantly improve the patients'quality of sexual life,with a high safety and low incidence of adverse reactions.


Result Analysis
Print
Save
E-mail