1.Identification and Biological Characterization of Pathogen and Screening of Effective Fungicides for Wilt of Tetradium ruticarpum
Yuxin LIU ; Qin XU ; Yue YUAN ; Tiantian GUO ; Zheng'en XIAO ; Shaotian ZHANG ; Ming LIU ; Fuqiang YIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):198-206
ObjectiveTo identify the pathogen species responsible for the wilt disease of Tetradium ruticarpum in Chongqing, investigate there biological characteristics, and screen effective fungicides, so as to provide a theoretical basis for disease control in production. MethodsThe pathogen was isolated via the tissue culture method. Pathogenicity was verified according to Koch's postulates. The pathogen was identified based on morphological characteristics and multi-gene phylogenetic analysis. The mycelial growth rate method was used for biological characterization of the pathogen and fungicide screening. ResultsThe pathogen colonies were nearly circular with irregular edges, white, short, velvety aerial hyphae, and pale purple undersides. Macroconidia were colorless, sickle-shaped, with 3-5 septa, while microconidia were transparent, elliptical, aseptate or with 1-2 septa. Multi-gene phylogenetic analysis showed that the pathogen clustered in the same clade as Fusarium fujikuroi with 100% support, which, combined with morphological characteristics, identified the pathogen causing wilt of T. ruticarpum in Chongqing as F. fujikuroi. The optimal conditions for the mycelial growth of F. fujikuroi were mung bean agar (MBA) with glucose as the carbon source, beef extract and yeast powder as nitrogen sources, 28 ℃, pH 7.0, and alternating light/dark conditions. The optimal conditions for sporulation were potato dextrose agar (PDA) with glucose as the carbon source, beef extract as the nitrogen source, 28 ℃, pH 7.0, and complete darkness. Among chemical fungicides, phenazine-1-carboxylic acid exhibited the strongest inhibitory effect on F. fujikuroi. Shenqinmycin and tetramycin were the most effective bio-fungicides. ConclusionThis study is the first to report F. fujikuroi as the causal agent of wilt disease in T. rutaecarpa. The chemical fungicide phenazine-1-carboxylic acid and the bio-fungicides shenqinmycin and tetramycin showed strong inhibitory effects against F. fujikuroi.
2.Mechanism of action of energy metabolism in hepatic ischemia-reperfusion injury and related targeted therapies
Tiantian YANG ; Lu HUANG ; Xiao ZHANG ; Yali REN ; Weitian XU ; Song ZHANG
Journal of Clinical Hepatology 2025;41(9):1956-1960
Hepatic ischemia-reperfusion injury (HIRI) is an inevitable major complication during surgical procedures such as liver transplantation and partial hepatectomy, and its prevention and treatment are hotspots and difficulties in clinical practice. This article reviews the mechanism of injury caused by energy metabolism disorders during liver ischemia-reperfusion and related treatment strategies and summarizes the current advances in metabolism-related therapies, in order to provide new ideas for further clarifying the onset mechanism of HIRI and exploring effective clinical prevention and treatment strategies for HIRI.
3.Study on pharmacokinetic characteristics of ciprofol in pregnant and fetal rats
Wenhao CHU ; Yuanman QIN ; Tiantian ZHANG ; Jiaqi XU ; Ying LI ; Zhiqing ZHANG
China Pharmacy 2025;36(11):1348-1351
OBJECTIVE To study the pharmacokinetic characteristics of ciprofol in pregnant and fetal rats, and provide reference for the application of ciprofol in cesarean section. METHODS Eight pregnant rats were selected. A single dose of 2.4 mg/kg of ciprofol was administered via the tail vein. One fetal rat was selected at 2, 4, 8, 12, 16, 25, 35, 45, 60, and 90 minutes respectively after ciprofol administration. Subsequently, whole blood samples were collected simultaneously from both the pregnant rats and fetal rats. HPLC-MS/MS method was used to determine the concentration of ciprofol in the bodies of pregnant and fetal rats. The ratios of fetal-to-maternal blood concentrations (F/M ratios) at each time point were calculated, and the F/M-time curves were plotted. Subsequently, non-compartmental pharmacokinetic parameters were computed using DAS 2.0 software. RESULTS Compared with pregnant rats, cmax, AUC0-90 min and AUC0-∞ of ciprofol in fetal rats were decreased significantly, while MRT was increased significantly (P<0.05). The F/M curve of ciprofol initially increased and then decreased, and between 0.16- 0.84, reaching a maximum value of 0.84 at 45 minutes. CONCLUSIONS Ciprofol can penetrate the placental barrier, and there are significant differences in pharmacokinetic parameters between pregnant and fetal rats. Moreover, the exposure level of ciprofol in fetal rats is much lower than that in pregnant rats. Therefore, ciprofol shows promise as an ideal anesthetic agent for cesarean section delivery.
4.Safety and efficacy of human umbilical cord-derived mesenchymal stem cells in COVID-19 patients: A real-world observation.
Siyu WANG ; Tao YANG ; Tiantian LI ; Lei SHI ; Ruonan XU ; Chao ZHANG ; Zerui WANG ; Ziying ZHANG ; Ming SHI ; Zhe XU ; Fu-Sheng WANG
Chinese Medical Journal 2025;138(22):2984-2992
BACKGROUND:
The effects of human umbilical cord-derived mesenchymal stem cell (UC-MSC) treatment on coronavirus disease 2019 (COVID-19) patients have been preliminarily characterized. However, real-world data on the safety and efficacy of intravenous transfusions of MSCs in hospitalized COVID-19 patients at the convalescent stage remain to be reported.
METHODS:
This was a single-arm, multicenter, real-word study in which a contemporaneous external control was included as the control group. Besides, severe and critical COVID-19 patients were considered together as the severe group, given the small number of critical patients. For a total of 110 patients, 21 moderate patients and 31 severe patients were enrolled in the MSC treatment group, while 26 moderate patients and 32 severe patients were enrolled in the control group. All patients received standard treatment. The MSC treatment patients additionally received intravenous infusions of MSCs at a dose of 4 × 10 7 cells on days 0, 3, and 6, respectively. The clinical outcomes, including adverse events (AEs), lung lesion proportion on chest computed tomography, pulmonary function, 6-min walking distance (6-MWD), clinical symptoms, and laboratory parameters, were measured on days 28, 90, 180, 270, and 360 during the follow-up visits.
RESULTS:
In patients with moderate COVID-19, MSC treatment improved pulmonary function parameters, including forced expiratory volume in the first second (FEV1) and maximum forced vital capacity (VCmax) on days 28 (FEV1, 2.75 [2.35, 3.23] vs . 2.11 [1.96, 2.35], P = 0.008; VCmax, 2.92 [2.55, 3.60] vs . 2.47 [2.18, 2.68], P = 0.041), 90 (FEV1, 2.93 [2.63, 3.27] vs . 2.38 [2.24, 2.63], P = 0.017; VCmax, 3.52 [3.02, 3.80] vs . 2.59 [2.45, 3.15], P = 0.017), and 360 (FEV1, 2.91 [2.75, 3.18] vs . 2.30 [2.16, 2.70], P = 0.019; VCmax,3.61 [3.35, 3.97] vs . 2.69 [2.56, 3.23], P = 0.036) compared with the controls. In addition, in severe patients, MSC treatment notably reduced the proportion of ground-glass lesions in the whole lung volume on day 90 ( P = 0.045) compared with the controls. No difference in the incidence of AEs was observed between the two groups. Similarly, no significant differences were found in the 6-MWD, D-dimer levels, or interleukin-6 concentrations between the MSC and control groups.
CONCLUSIONS:
Our results demonstrate the safety and potential of MSC treatment for improved lung lesions and pulmonary function in convalescent COVID-19 patients. However, comprehensive and long-term studies are required to confirm the efficacy of MSC treatment.
TRIAL REGISTRATION
Chinese Clinical Trial Registry, ChiCTR2000031430.
Humans
;
COVID-19/therapy*
;
Female
;
Male
;
Mesenchymal Stem Cell Transplantation/adverse effects*
;
Middle Aged
;
Adult
;
Umbilical Cord/cytology*
;
Mesenchymal Stem Cells/cytology*
;
SARS-CoV-2
;
Aged
;
Treatment Outcome
5.Structural insights into the binding modes of lanreotide and pasireotide with somatostatin receptor 1.
Zicheng ZENG ; Qiwen LIAO ; Shiyi GAN ; Xinyu LI ; Tiantian XIONG ; Lezhi XU ; Dan LI ; Yunlu JIANG ; Jing CHEN ; Richard YE ; Yang DU ; Thiansze WONG
Acta Pharmaceutica Sinica B 2025;15(5):2468-2479
Somatostatin receptor 1 (SSTR1) is a crucial therapeutic target for various neuroendocrine and oncological disorders. Current SSTR1-targeted treatments, including the first-generation somatostatin analog lanreotide (Lan) and the second-generation analog pasireotide (Pas), show promise but encounter challenges related to selectivity and efficacy. This study presents high-resolution cryo-electron microscopy structures of SSTR1 complexed with Lan or Pas, revealing the distinct mechanisms of ligand-binding and activation. These structures illustrate unique conformational changes in the SSTR1 orthosteric pocket induced by each ligand, which are critical for receptor activation and ligand selectivity. Combined with the biochemical assays and molecular dynamics simulations, our results provide a comparative analysis of binding characteristics within the SSTR family, highlighting subtle differences in SSTR1 activation by Lan and Pas. These insights pave the way for designing next-generation therapies with enhanced efficacy and reduced side effects through improved receptor subtype selectivity.
6.A reporter gene assay for determining antibody-dependent cell-mediated phagocytosis activity of HER2-targeted antibody drug conjugate.
Ying CHEN ; Can WANG ; Qin ZHAO ; Mingren WANG ; Tiantian LI ; Shanshan DONG ; Hong SHAO ; Weidong XU
Chinese Journal of Biotechnology 2025;41(8):3122-3130
To develop a method for determining the antibody-dependent cell-mediated phagocytosis (ADCP) activity of human epidermal growth factor receptor 2 (HER2)-targeted antibody drug conjugate (ADC) based on the reporter gene assay, we established an ADCP activity assay with Jurkat/NFAT/FcγRIIa cells as the effector cells and BT474 as the target cells. Then, the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were optimized by the method of design of experiment (DOE). The method showed a significant dose-response relationship, which was complied with the four-parameter equation: y=(A-D)/[1+(x/C)B]+D. The durability ranges of the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were (2.5-4.0)×105 cells/mL, 3-5, 1.0-2.0 h, 0 h, and 5.0-6.0 h, respectively. The results of the methodological validation showed that the linear equation was y=1.106 8x-0.011 6, r=0.969 2. The established method showed the relative accuracy ranging from -6.59% to 2.98% and the geometric coefficient of variation less than 11% in the intermediate precision test. Furthermore, the method was target-specific. The method was then applied to the determination of ADCP activity of HER2-targeted ADC, demonstrating the result of (103.5±5.7)%. We developed a reporter gene assay for determining the ADCP activity of HER2-targeted ADC and the assay demonstrated high accuracy and good reproducibility, which proposes a highly efficient and approache for evaluating ADCP effect of this HER2-targeted ADC, and also provides a referable technique for characterizing the Fc effector functions of ADCs with diverse targets.
Humans
;
Receptor, ErbB-2/immunology*
;
Phagocytosis/drug effects*
;
Immunoconjugates/immunology*
;
Genes, Reporter
;
Antibody-Dependent Cell Cytotoxicity
;
Jurkat Cells
7.Engineering of Pichia pastoris for producing glycoproteins with hybrid-type (GlcNAcMan5GlcNAc2) N-glycans.
Hao WANG ; Tiantian WANG ; Bin ZHANG ; Jun WU ; Huifang XU ; Yanru ZHANG ; Kehai LIU ; Bo LIU
Chinese Journal of Biotechnology 2025;41(9):3617-3629
Glycosylation modification is an important post-translational modification of proteins, which participates in regulating protein half-life, biological activity, and immunogenicity, thereby affecting their functions. Glycoproteins expressed in Pichia pastoris predominantly carry high-mannose type glycans, primarily composed of mannose residues, which starkly contrasts with the complex-type glycans synthesized by mammalian cells. This study aims to transform the high mannose glycosylation modification of P. pastoris into a hybrid glycosylation modification similar to that of mammalian cells through genetic engineering technology. We introduced the mannosidase Ⅰ gene (MDSⅠ) from Trichoderma viride and the human β-1,2-N-acetylglucosaminyltransferase I gene (GnTⅠ) into a previously constructed P. pastoris strain (∆och1) capable of producing Man8GlcNAc2 glycans. To precisely regulate the expression of MDSⅠ and GnTⅠ, we designed various promoter combinations, including the strong inducible AOX promoter and the constitutive GAP promoter. The receptor-binding domain (RBD, residues 377-588) of the spike protein from the Middle East respiratory syndrome coronavirus (MERS-CoV) was selected as the reporter protein for this investigation (MERS-RBD). The N-glycosylation profile of MERS-RBD was systematically analyzed using PNGase F digestion coupled with mass spectrometry. The results showed that after the knockout of och1 and the introduction of MDSⅠ and GnTⅠ genes with different promoter combinations, P. pastoris strains capable of producing GlcNAcMan5GlcNAc2 glycans were successfully generated. When the AOX promoter was used to control the MDSⅠ gene and the GAP promoter was used to control the GnTⅠ gene, the engineered strain exhibited the highest proportion of hybrid-type GlcNAcMan5GlcNAc2 glycans, which accounted for 68.38% of the total N-glycosylation. In conclusion, we successfully engineered a P. pastoris strain capable of synthesizing hybrid-type GlcNAcMan5GlcNAc2 glycans, establishing a foundation for subsequent research on the biosynthesis of complex-type N-glycans in P. pastoris.
Glycosylation
;
Glycoproteins/genetics*
;
Polysaccharides/metabolism*
;
N-Acetylglucosaminyltransferases/metabolism*
;
Pichia/metabolism*
;
Humans
;
Mannosidases/metabolism*
;
Genetic Engineering
;
Trichoderma/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales
8.Related health burden with the improvement of air quality across China
Huaiyue XU ; Qing WANG ; Huanhuan ZHU ; Yayi ZHANG ; Runmei MA ; Jie BAN ; Yiting LIU ; Chen CHEN ; Tiantian LI
Chinese Medical Journal 2024;137(22):2726-2733
Background::Substantial progress in air pollution control has brought considerable health benefits in China, but little is known about the spatio-temporal trends of economic burden from air pollution. This study aimed to explore their spatio-temporal features of disease burden from air pollution in China to provide policy recommendations for efficiently reducing the air pollution and related disease burden in an era of a growing economy.Methods::Using the Global Burden of Disease method and willingness to pay method, we estimated fine particulate matter (PM 2.5) and/or ozone (O 3) related premature mortality and its economic burden across China, and explored their spatio-temporal trends between 2005 and 2017. Results::In 2017, we estimated that the premature mortality and economic burden related to the two pollutants were RMB 0.94 million (68.49 per 100,000) and 1170.31 billion yuan (1.41% of the national gross domestic product [GDP]), respectively. From 2005 to 2017, the total premature mortality was decreasing with the air quality improvement, but the economic burden was increasing along with the economic growth. And the economic growth has contributed more to the growth of economic costs than the economic burden decrease brought by the air quality improvement. The premature mortality and economic burden from O 3 in the total loss from the two pollutants was substantially lower than that of PM 2.5, but it was rapidly growing. The O 3-contribution was highest in the Yangtze River Delta region, the Fen-Wei Plain region, and some western regions. The proportion of economic burden from PM 2.5 and O 3 to GDP significantly declined from 2005 to 2017 and showed a decreasing trend pattern from northeast to southwest. Conclusion::The disease burden from O 3 is lower than that of PM 2.5, the O 3-contribution has a significantly increasing trend with the growth of economy and O 3 concentration.
9.Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice
FU XUFENG ; HAN HANG ; YANG HONG ; XU BO ; DAI WENJIE ; LIU LING ; HE TIANTIAN ; DU XING ; PEI XIUYING
Journal of Zhejiang University. Science. B 2024;25(4):307-323,中插1-中插15
Microplastics(MPs)and nanoplastics(NPs)have become hazardous materials due to the massive amount of plastic waste and disposable masks,but their specific health effects remain uncertain.In this study,fluorescence-labeled polystyrene NPs(PS-NPs)were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo.Interestingly,whole-body imaging found that PS-NPs accumulated in the testes of mice.Therefore,the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice,and their mechanisms,were investigated.After oral exposure to PS-NPs,their spermatogenesis was affected and the spermatogenic cells were damaged.The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing(RNA-seq)to determine the toxic mechanisms;a ferroptosis pathway was found after PS-NP exposure.The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1(Fer-1),and it was also found that nuclear factor erythroid 2-related factor 2(Nrf2)played an important role in spermatogenic cell ferroptosis induced by PS-NPs.Finally,it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity.This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
10.Role of exosome-derived miRNA-21-5p/Smad7 in quartz dust-induced pulmonary fibrosis in rats
Yang LU ; Xiaohui DING ; Tiantian WANG ; Mengtong XU ; Jiarui HAO ; Wenjing LI ; Jing SONG
Journal of Environmental and Occupational Medicine 2024;41(8):861-866
Background Quartz dust cannot be degraded in the lungs, and inhalation of a large amount of quartz dust in the occupational production process will lead to the occurrence of pulmonary fibrosis, and then develop into silicosis. In recent years, studies have found that exosomes may be involved in the pathogenesis of fibrotic diseases by carrying microribonucleic acid (miRNA), but the mechanism of their actions in silicosis still needs to be studied. Objective To investigate the role of exosome-derived miRNA-21-5p/mothers against decapentaplegic homolog 7 (Smad7) in quartz dust-induced pulmonary fibrosis in rats. Methods Twenty-four healthy male SD rats were randomly divided into four groups (six rats in each group): control 4-week group, control 16-week group, quartz 4-week group, and quartz 16-week group. At the beginning of the experiment, 1 mL of quartz suspension (50 mg·mL−1) and 1 mL of normal saline were injected into the trachea of rats in the quartz group and the control group, respectively, by means of one-time non-exposure intratracheal dust staining. Alveolar lavage was performed at the 4th and 16th weeks after dust staining, the exosomes in lavage solution were extracted by polyethylene glycol (PEG) precipitation, morphological identification was conducted by transmission electron microscopy (TEM), particle size of exosomes was detected by nano-tracking analysis (NTA), and the marker proteins CD9 and CD63 of exosomes were detected by Western blotting (WB). The expression of miRNA-21-5p in exosomes was determined by reverse transcription polymerase chain reaction (RT-PCR). The degree of lung tissue injury and fibrosis was observed by hematoxylin-eosin staining (HE) and Masson staining. The collagen content of lung tissue was detected by hydroxyproline (HYP) method. The expression of Smad7 protein in lung tissue was detected by WB. Results The results of pathological staining showed that compared with the control group, lung inflammatory cell infiltration, alveolar wall thickening, and collagen increase were observed after 4 weeks of dusting, and collagen deposition and silicon nodules appeared after 16 weeks of dusting. Compared with the control group, the expression level of HYP in the lung tissue of the quartz group was increased after 4 weeks and 16 weeks of dust staining (P<0.05). Transmission electron microscopy showed that exosomes were saucer-shaped, and the average particle size of exosomes was 95.8 nm by NTA. Positive expression of exosome marker proteins CD9 and CD81 was found by WB. Compared with the control group, the expression of exosome-derived miRNA-21-5p in alveolar lavage fluid in the quartz group increased in the 4th week and the 16th week (P<0.05), and the expression of Smad7 protein in lung tissue decreased (P<0.05). Conclusion Exosome-derived miRNA-21-5p and Smad7 may be involved in the mechanism of quartz dust-induced pulmonary fibrosis in rats.

Result Analysis
Print
Save
E-mail