1.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
2.Clinical guideline for diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture (version 2023)
Jianan ZHANG ; Bohua CHEN ; Tongwei CHU ; Yirui CHEN ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Dechun LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Wei MEI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Honghui SUN ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Yongming XI ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Gang ZHAO ; Jie ZHAO ; Jianguo ZHANG ; Xiaozhong ZHOU ; Yue ZHU ; Yingze ZHANG ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2023;39(3):204-213
Ankylosing spondylitis (AS) combined with spinal fractures with thoracic and lumbar fracture as the most common type shows characteristics of unstable fracture, high incidence of nerve injury, high mortality and high disability rate. The diagnosis may be missed because it is mostly caused by low-energy injury, when spinal rigidity and osteoporosis have a great impact on the accuracy of imaging examination. At the same time, the treatment choices are controversial, with no relevant specifications. Non-operative treatments can easily lead to bone nonunion, pseudoarthrosis and delayed nerve injury, while surgeries may be failed due to internal fixation failure. At present, there are no evidence-based guidelines for the diagnosis and treatment of AS combined with thoracic and lumbar fracture. In this context, the Spinal Trauma Academic Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate the Clinical guideline for the diagnosis and treatment of adult ankylosing spondylitis combined with thoracolumbar fracture ( version 2023) by following the principles of evidence-based medicine and systematically review related literatures. Ten recommendations on the diagnosis, imaging evaluation, classification and treatment of AS combined with thoracic and lumbar fracture were put forward, aiming to standardize the clinical diagnosis and treatment of such disorder.
3.Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults (version 2023)
Yukun DU ; Dageng HUANG ; Wei TIAN ; Dingjun HAO ; Yongming XI ; Baorong HE ; Bohua CHEN ; Tongwei CHU ; Jian DONG ; Jun DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Weiqing KONG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Fei LUO ; Jianyi LI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Jiang SHAO ; Jiwei TIAN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Xiangyang WANG ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Xuhui ZHOU ; Mingwei ZHAO
Chinese Journal of Trauma 2023;39(4):299-308
The acute combination fractures of the atlas and axis in adults have a higher rate of neurological injury and early death compared with atlas or axial fractures alone. Currently, the diagnosis and treatment choices of acute combination fractures of the atlas and axis in adults are controversial because of the lack of standards for implementation. Non-operative treatments have a high incidence of bone nonunion and complications, while surgeries may easily lead to the injury of the vertebral artery, spinal cord and nerve root. At present, there are no evidence-based Chinese guidelines for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults. To provide orthopedic surgeons with the most up-to-date and effective information in treating acute combination fractures of the atlas and axis in adults, the Spinal Trauma Group of Orthopedic Branch of Chinese Medical Doctor Association organized experts in the field of spinal trauma to develop the Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults ( version 2023) by referring to the "Management of acute combination fractures of the atlas and axis in adults" published by American Association of Neurological Surgeons (AANS)/Congress of Neurological Surgeons (CNS) in 2013 and the relevant Chinese and English literatures. Ten recommendations were made concerning the radiological diagnosis, stability judgment, treatment rules, treatment options and complications based on medical evidence, aiming to provide a reference for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults.
4.Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA.
Qihua PAN ; Junzhi LUO ; Yuewen JIANG ; Zhi WANG ; Ke LU ; Tiansheng CHEN
Journal of Zhejiang University. Science. B 2022;23(1):74-83
Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.
Animals
;
CRISPR-Cas Systems
;
Cell Line
;
Gene Editing
;
Oryzias/genetics*
;
RNA, Guide/genetics*
;
RNA, Transfer/genetics*
5.Guideline for postoperative rehabilitation treatment following vertebral augmentation for osteoporotic vertebral compression fracture (version 2022)
Zhengwei XU ; Dingjun HAO ; Liming CHENG ; Baorong HE ; Bohua CHEN ; Chen CHEN ; Fei CHE ; Jian CHEN ; Qixin CHEN ; Liangjie DU ; Shunwu FAN ; Zhong FANG ; Shiqing FENG ; Yanzheng GAO ; Haishan GUAN ; Zhong GUAN ; Hua JIANG ; Weimin JIANG ; Dianming JIANG ; Jun JIANG ; Yue JIANG ; Lijun HE ; Yuan HE ; Bo LI ; Tao LI ; Jianjun LI ; Xigong LI ; Yijian LIANG ; Bin LIN ; Bin LIU ; Bo LIU ; Yong LIU ; Zhibin LIU ; Xuhua LU ; Chao MA ; Lie QIAN ; Renfu QUAN ; Hongxun SANG ; Haibo SHEN ; Jun SHU ; Honghui SUN ; Tiansheng SUN ; Jun TAN ; Mingxing TANG ; Sheng TAO ; Honglin TENG ; Yun TIAN ; Jiwei TIAN ; Qiang WANG ; Xinwei WANG ; Jianhuang WU ; Peigen XIE ; Weihong XU ; Bin YAN ; Yong YANG ; Guoyong YIN ; Xiaobing YU ; Yuhong ZENG ; Guoqing ZHANG ; Xiaobo ZHANG ; Jie ZHAO ; Yue ZHU
Chinese Journal of Trauma 2022;38(11):961-972
Osteoporotic vertebral compression fracture (OVCF) can lead to lower back pain and may be even accompanied by scoliosis, neurological dysfunction and other complications, which will affect the daily activities and life quality of patients. Vertebral augmentation is an effective treatment method for OVCF, but it cannot correct unbalance of bone metabolism or improve the osteoporotic status, causing complications like lower back pain, limited spinal activities and vertebral refracture. The post-operative systematic and standardized rehabilitation treatments can improve curative effect and therapeutic efficacy of anti-osteoporosis, reduce risk of vertebral refracture, increase patient compliance and improve quality of life. Since there still lack relevant clinical treatment guidelines for postoperative rehabilitation treatments following vertebral augmentation for OVCF, the current treatments are varied with uneven therapeutic effect. In order to standardize the postoperative rehabilitation treatment, the Spine Trauma Group of the Orthopedic Branch of Chinese Medical Doctor Association organized relevant experts to refer to relevant literature and develop the "Guideline for postoperative rehabilitation treatment following vertebral augmentation for osteoporotic vertebral compression fracture (2022 version)" based on the clinical guidelines published by the American Academy of Orthopedic Surgeons (AAOS) as well as on the principles of scientificity, practicality and advancement. The guideline provided evidence-based recommendations on 10 important issues related to postoperative rehabilitation treatments of OVCF.
6.Rapid determination of active components in Ginkgo biloba leaves by near infrared spectroscopy combined with genetic algorithm joint extreme learning machine.
Hong-Fei NI ; Le-Ting SI ; Jia-Peng HUANG ; Qiong ZAN ; Yong CHEN ; Lian-Jun LUAN ; Yong-Jiang WU ; Xue-Song LIU
China Journal of Chinese Materia Medica 2021;46(1):110-117
Near-infrared spectroscopy(NIRS) combined with band screening method and modeling algorithm can be used to achieve the rapid and non-destructive detection of the traditional Chinese medicine(TCM) production process. This paper focused on the ginkgo leaf macroporous resin purification process, which is the key technology of Yinshen Tongluo Capsules, in order to achieve the rapid determination of quercetin, kaempferol and isorhamnetin in effluent. The abnormal spectrum was eliminated by Mahalanobis distance algorithm, and the data set was divided by the sample set partitioning method based on joint X-Y distances(SPXY). The key information bands were selected by synergy interval partial least squares(siPLS); based on that, competitive adaptive reweighted sampling(CARS), successive projections algorithm(SPA) and Monte Carlo uninformative variable(MC-UVE) were used to select wavelengths to obtain less but more critical variable data. With selected key variables as input, the quantitative analysis model was established by genetic algorithm joint extreme learning machine(GA-ELM) algorithm. The performance of the model was compared with that of partial least squares regression(PLSR). The results showed that the combination with siPLS-CARS-GA-ELM could achieve the optimal model performance with the minimum number of variables. The calibration set correlation coefficient R_c and the validation set correlation coefficient R_p of quercetin, kaempferol and isorhamnetin were all above 0.98. The root mean square error of calibration(RMSEC), the root mean square error of prediction(RMSEP) and the relative standard errors of prediction(RSEP) were 0.030 0, 0.029 2 and 8.88%, 0.041 4, 0.034 8 and 8.46%, 0.029 3, 0.027 1 and 10.10%, respectively. Compared with the PLSR me-thod, the performance of the GA-ELM model was greatly improved, which proved that NIRS combined with GA-ELM method has a great potential for rapid determination of effective components of TCM.
Algorithms
;
Ginkgo biloba
;
Least-Squares Analysis
;
Plant Leaves
;
Spectroscopy, Near-Infrared
7. Consensus on standardized diagnosis and treatment for osteoporotic vertebral compression fracture patients during epidemic of corona virus disease 2019
Zhong FANG ; Baorong HE ; Dingjun HAO ; Feng LI ; Liang YAN ; Yanzheng GAO ; Shiqing FENG ; Tiansheng SUN ; Dianming JIANG ; Jiwei TIAN ; Huan WANG ; Yingze ZHANG ; Shunwu FAN ; Yue ZHU ; Yijian LIANG ; Yun TIAN ; Bo LI ; Weimin JIANG ; Jingye WANG ; Xiaohui MAO ; Changsheng ZHU ; Yali LI ; Lijun HE ; Yuan HE ; Qindong SHI ; Shuixia LI ; Jing WANG ; Zijun GAO ; Buhuai DONG ; Honghui YU ; Yonghong JIANG
Chinese Journal of Trauma 2020;36(2):117-123
Since December 2019, the corona virus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (2019-nCoV) has been reported in Wuhan, Hubei Province. Almost 70% of patients susceptible to 2019-nCoV are over age of 50 years, with extremely large proportion of critical illness and death of the elderly patients. Meanwhile, the elderly patients are at high risk of osteoporotic fractures especially osteoporotic vertebral compression fractures (OVCF). During the prevention and control of COVID-19 epidemic, orthopedists are confronted with the following difficulties including how to screen and protect OVCF patients, how to accurately diagnose and assess the condition of OVCF patients with suspected or confirmed COVID-19, and how to develop reasonable treatment plans and comprehensive protective measures in emergency and outpatient clinics. In order to standardize the diagnosis and treatment of patients with OVCF diagnosed with COVID-19, the authors jointly develop this expert consensus. The consensus systematically recommends the standardized emergency and outpatient screening and confirmation procedures for OVCF patients with suspected or confirmed COVID-19 and protective measures for emergency and outpatient clinics. Moreover, the consensus describes the grading and classification of OVCF patients diagnosed with COVID-19 according to the severity of illness and recommends different treatment plans and corresponding protective measures based on the different types and epidemic prevention and control requirements.
8.Clinical guideline for surgical treatment of symptomatic chronic osteoporotic vertebral fractures
Bohua CHEN ; Qixin CHEN ; Liming CHENG ; Tongwei CHU ; Zhongliang DENG ; Jian DONG ; Haoyu FENG ; Shiqing FENG ; Shunwu FAN ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Dingjun HAO ; Baorong HE ; Dianming JIANG ; Jianyuan JIANG ; Chunde LI ; Fang LI ; Feng LI ; Li LI ; Weishi LI ; Zhongshi LI ; Qi LIAO ; Bin LIU ; Guodong LIU ; Xiaoguang LIU ; Zhongjun LIU ; Shibao LU ; Xinlong MA ; Limin RONG ; Huiyong SHEN ; Yong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Jiwei TIAN ; Huan WANG ; Hong XIA ; Jianzhong XU ; Zhengwei XU ; Huilin YANG ; Jie ZHAO ; Yue ZHOU ; Yue ZHU
Chinese Journal of Trauma 2020;36(7):577-586
According to the pathological characteristics of symptomatic chronic thoracic and lumbar osteoporotic vertebral fracture (SCOVF), the different clinical treatment methods are selected, including vertebral augmentation, anterior-posterior fixation and fusion, posterior decompression fixation and fusion, and posterior correction osteotomy. However, there is still a lack of a unified understanding on how to choose appropriate treatment method for SCOVF. In order to reflect the new treatment concept and the evidence-based medicine progress of SCOVF in a timely manner and standardize its treatment, the clinical guideline for surgical treatment of SCOVF is formulated in compliance with the principle of scientificity, practicability and advancement and based on the level of evidence-based medicine.
9.DPHL:A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
Zhu TIANSHENG ; Zhu YI ; Xuan YUE ; Gao HUANHUAN ; Cai XUE ; Piersma R. SANDER ; Pham V. THANG ; Schelfhorst TIM ; Haas R.G.D. RICHARD ; Bijnsdorp V. IRENE ; Sun RUI ; Yue LIANG ; Ruan GUAN ; Zhang QIUSHI ; Hu MO ; Zhou YUE ; Winan J. Van Houdt ; Tessa Y.S. Le Large ; Cloos JACQUELINE ; Wojtuszkiewicz ANNA ; Koppers-Lalic DANIJELA ; B(o)ttger FRANZISKA ; Scheepbouwer CHANTAL ; Brakenhoff H. RUUD ; Geert J.L.H. van Leenders ; Ijzermans N.M. JAN ; Martens W.M. JOHN ; Steenbergen D.M. RENSKE ; Grieken C. NICOLE ; Selvarajan SATHIYAMOORTHY ; Mantoo SANGEETA ; Lee S. SZE ; Yeow J.Y. SERENE ; Alkaff M.F. SYED ; Xiang NAN ; Sun YAOTING ; Yi XIAO ; Dai SHAOZHENG ; Liu WEI ; Lu TIAN ; Wu ZHICHENG ; Liang XIAO ; Wang MAN ; Shao YINGKUAN ; Zheng XI ; Xu KAILUN ; Yang QIN ; Meng YIFAN ; Lu CONG ; Zhu JIANG ; Zheng JIN'E ; Wang BO ; Lou SAI ; Dai YIBEI ; Xu CHAO ; Yu CHENHUAN ; Ying HUAZHONG ; Lim K. TONY ; Wu JIANMIN ; Gao XIAOFEI ; Luan ZHONGZHI ; Teng XIAODONG ; Wu PENG ; Huang SHI'ANG ; Tao ZHIHUA ; Iyer G. NARAYANAN ; Zhou SHUIGENG ; Shao WENGUANG ; Lam HENRY ; Ma DING ; Ji JIAFU ; Kon L. OI ; Zheng SHU ; Aebersold RUEDI ; Jimenez R. CONNIE ; Guo TIANNAN
Genomics, Proteomics & Bioinformatics 2020;18(2):104-119
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-line and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to gen-erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.
10. Preliminary effect observation on the application of micro-negative pressure in children with small-area deep partial-thickness burn
Xiaopeng ZHENG ; Jue CHEN ; Tiansheng CHEN ; Yaonan JIANG ; Tuo SHEN ; Shichu XIAO ; Xiaoyan HU
Chinese Journal of Burns 2019;35(10):720-725
Objective:
To preliminarily observe the effects of application of micro-negative pressure in children with small-area deep partial-thickness burn.
Methods:
From January 2016 to August 2018, 64 children with small-area deep partial-thickness burn who were admitted to the Department of Burn Surgery of the First Affiliated Hospital of Naval Medical University were recruited in this prospective randomized controlled study. According to the random number table, they were divided into negative pressure group [18 boys and 14 girls, aged (3.9±1.6) years with total burn area of (5.5±2.2)% total body surface area (TBSA)] and conventional group [20 boys and 12 girls, aged (3.8±1.7) years with total burn area of (5.8±1.6)% TBSA], with 32 patients in each group. After admission, simple debridement was performed in the patients of 2 groups. After that, the children in negative pressure group were treated with micro-negative pressure with negative pressure material replaced every 3 to 5 days. Children in conventional group were treated with silver sulfadiazine cream with dressing change every other day. On post injury day (PID) 14 and 21, general wound observation was performed, the wound healing rate was calculated, the exudates from the wounds were cultured and the positive detection rate was calculated. The number of patients requiring surgical skin grafting was recorded and the rate of surgical skin grafting was calculated, and the complete wound healing time was recorded in the patients of 2 groups. Scar formation was evaluated by the Vancouver Scar Scale (VSS) in 3, 6, and 12 months after wound healing. Data were processed with chi-square test,

Result Analysis
Print
Save
E-mail