1.Impact of Toxoplasma gondii type I rhoptry protein 16 on programmed cell death ligand 1 expression and its binding to programmed cell death 1 in lung adenocarcinoma cells
Guangqi LI ; Yuning ZHOU ; Shaohan MA ; Mei TIAN ; Tiantian DANG ; Zhijun ZHAO
Chinese Journal of Schistosomiasis Control 2025;37(1):44-54
Objective To investigate the impact of Toxoplasma gondii type I, II and III rhoptry protein 16 (ROP16) on programmed cell death ligand 1 (PD-L1) expression in lung adenocarcinoma cells, and to examine the effects of T. gondii type I ROP16 protein on the relative PD-L1 expression, the relative PD-L1 distribution on the cell membrane surface, and the binding of programmed cell death 1 (PD-1) to PD-L1 in lung adenocarcinoma cells. Methods Lentiviral vectors overexpressing T. gondii type I, II and III ROP16 proteins were generated, and transfected into the human lung adenocarcinoma A549 cell line. A549 cells were used as a blank control group, and A549 cells transfected with an empty lentiviral expression vector were used as a negative control group, while A549 cells transfected with lentiviral vectors overexpressing T. gondii type I, II and III ROP16 proteins served as experimental groups. Stably transfected cells were selected with puromycin and verified using Western blotting, quantitative real-time PCR (RT-qPCR), and immunofluorescence assays. The PD-L1 expression was quantified at translational and transcriptional levels using Western blotting and RT-qPCR assays in A549 cells in the five groups, and the relative PD-L1 distribution was detected on the A549 cell membrane surface using flow cytometry. In addition, the effect of T. gondii type I ROP16 protein on the PD-1/PD-L1 binding was measured in A549 cells using enzyme-linked immunosorbent assay (ELISA). Results The relative ROP16 protein expression was 0, 0, 1.546 ± 0.091, 1.822 ± 0.047 and 2.334 ± 0.089 in the blank control group, negative control group, and the T. gondii type I, II and III ROP16 protein overexpression groups (F = 1 339.00,P < 0.001), and the relative ROP16 mRNA expression was 2.153 ± 0.949, 2.436 ± 1.614, 14.343 ± 0.020, 12.577 ± 0.285 and 15.090 ± 0.420 in the blank control group, negative control group and the T. gondii type I, II and III ROP16 protein overexpression groups, respectively (F = 483.50,P < 0.001). The ROP16 expression was higher in the T. gondii type I, II and III ROP16 protein overexpression groups than in the blank control group at both translational and transcriptional levels (allP values < 0.001). Immunofluorescence assay revealed that T. gondii type I, II and III ROP16 proteins were predominantly localized in A549 cell nuclei. Western blotting showed that the relative PD-L1 protein expression was 0.685 ± 0.109, 0.589 ± 0.114, 1.007 ± 0.117, 0.572 ± 0.151, and 0.426 ± 0.116 in the blank control group, negative control group, and the T. gondii type I, II and III ROP16 protein overexpression groups (F = 9.46,P < 0.05), and RT-qPCR assay quantified that the relative PD-L1 mRNA expression was 1.012 ± 0.190, 1.281 ± 0.465, 1.950 ± 0.175, 0.889 ± 0.251, and 0.230 ± 0.192 in the blank control group, negative control group, and the T. gondii type I, II and III ROP16 protein overexpression groups (F = 14.18,P < 0.05). The PD-L1 expression was higher in the T. gondii type IROP16 protein overexpression group than in the blank control group at both translational and transcriptional levels (both P values < 0.05). Flow cytometry detected that the relative distributions of PD-L1 protein were (10.83 ± 0.60)%, (11.23 ± 0.20)%, and (14.61 ± 0.50)% on the A549 cell membrane surface (F = 28.31, P < 0.05), and the relative distribution of PD-L1 protein was higher in the T. gondii type IROP16 protein overexpression group than in the blank control group and negative control group (both P values < 0.001). ELISA measured significant differences in the absorbance (A) value among the T. gondii type IROP16 protein overexpression group, the blank control group and the negative control group if the concentrations of the recombinant PD-1 protein were 0.04 (F = 10.45, P < 0.05), 0.08 μg/mL (F = 11.68, P < 0.05) and 0.12 μg/mL (F = 52.68, P < 0.05), and the A value was higher in the T. gondii type IROP16 protein overexpression group than in the blank control group and the negative control group (both P values < 0.05), indicating that T. gondii type IROP16 protein promoted the PD-L1/PD-1 binding in A549 cells in a concentration-dose manner. Conclusions T. gondii type IROP16 protein overexpression may up-regulate PD-L1 expression in A549 cells at both transcriptional and translational levels and the relative PD-L1 distribution on the A549 cell membrane surface, and affect the PD-1/PD-L1 binding in a concentration-dependent manner.
2.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
3.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
4.Clinical Study on Chaiqin Xiaoyong Decoction (柴芩消痈饮) Combined with Jinhuang Ointment (金黄膏) for the Nodular Stage of Acne Mastitis of Liver Meridian Heat Accumulation Type:A Randomized,Double-Blind,Placebo-Controlled Trial
Tian MENG ; Feifei MA ; Yuanyuan KANG ; Mengfei SHEN ; Shengfang HU ; Meina YE ; Yiqin CHENG ; Hongfeng CHEN
Journal of Traditional Chinese Medicine 2025;66(9):920-926
ObjectiveTo evaluate the clinical efficacy and safety of the traditional Chinese medicine (TCM) compound Chaiqin Xiaoyong Decoction (柴芩消痈饮, CXD) combined with Jinhuang Ointment (金黄膏, JO) in treating the nodular stage of acne mastitis of liver meridian heat accumulation type. MethodsA randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 108 patients with liver meridian heat accumulation type acne mastitis in the nodular stage were randomly assigned to a treatment group and a control group, with 54 patients in each group. Both groups received topical application of JO once daily at a thickness of 3~5 mm for 8 hours, along with standard nursing care. On this basis, the treatment group received oral CXD granules, while the control group received placebo granules, administered twice daily, 3 sachets per dose, for 14 consecutive days. Clinical efficacy, TCM symptom scores, nodule size, visual analogue scale (VAS) pain scores, white blood cell (WBC) count, C-reactive protein (CRP) level, and systemic immune-inflammation index (SII) were compared. At the end of treatment, efficacy and safety indicators were evaluated. A 6-month follow-up was conducted to compare the proportion of patients undergoing surgical treatment. ResultsThe total clinical efficacy rate in the treatment group was 90.38% (47/52), significantly higher than 32.00% (16/50) in the control group (P<0.01). The treatment group also showed significantly lower TCM symptom scores, VAS scores, nodule size, WBC count, CRP level, and SII (P<0.05 or P<0.01). During follow-up, the surgical intervention rate in the treatment group was 5.77% (3/52), lower than 14.00% (7/50) in the control group, with a statistically significant difference (P<0.01). No significant abnormalities were observed in safety indicators before and after treatment in either group. ConclusionCXD effectively reduces nodule size and alleviates symptoms such as redness and pain in patients with acne mastitis of liver meridian heat accumulation type, improves TCM symptom scores, enhances overall clinical efficacy, and demonstrates good safety.
5.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
6.Annual review of clinical research on lung transplantation of China in 2024
Xiaohan JIN ; Yixin SUN ; Jier MA ; Zengwei YU ; Yaling LIU ; Senlin HOU ; Xiangyun ZHENG ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):379-385
Lung transplantation is currently the only recognized effective treatment for end-stage lung disease and has improved the quality of life for patients. However, lung transplantation still faces many challenges, including rejection, infection, post-transplant acute kidney injury, post-transplant diabetes mellitus, ischemia-reperfusion injury and donor shortage, etc. Chinese lung transplantation scholars made a series of important progress in the field of clinical research in 2024, focusing on the study and solution of the above problems, and providing new ideas for lung transplantation surgery. This article systematically reviews the clinical research and technological innovation in the field of lung transplantation in 2024, summarizes the achievements of clinical research in the field of lung transplantation in China in 2024, and aims to providing new directions and strategies for future research.
7.Annual review of basic research on lung transplantation of China in 2024
Jier MA ; Junmin ZHU ; Lan ZHANG ; Xiaohan JIN ; Xiangyun ZHENG ; Senlin HOU ; Zengwei YU ; Yaling LIU ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):386-393
Lung transplantation is the optimal treatment for end-stage lung diseases and can significantly improve prognosis of the patients. However, postoperative complications such as infection, rejection, ischemia-reperfusion injury, and other challenges (like shortage of donor lungs) , limit the practical application of lung transplantation in clinical practice. Chinese research teams have been making continuous efforts and have achieved breakthroughs in basic research on lung transplantation by integrating emerging technologies and cutting-edge achievements from interdisciplinary fields, which has strongly propelled the development of this field. This article will comprehensively review the academic progress made by Chinese research teams in the field of lung transplantation in 2024, with a focus on the achievements of Chinese teams in basic research on lung transplantation. It aims to provide innovative ideas and strategies for key issues in the basic field of lung transplantation and to help China's lung transplantation cause reach a higher level.
8.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
9.Traditional Chinese Medicine Intervention in Signaling Pathways Related to Benign Prostatic Hyperplasia: A Review
Shenglong LI ; Ganggang LU ; Yonglin LIANG ; Xu MA ; Meisheng GONG ; Hui LI ; Yuanbo ZHAO ; Dacheng TIAN ; Yongqiang ZHAO ; Xixiang LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):287-295
Benign prostatic hyperplasia (BPH) is a common chronic progressive disease in middle-aged and elderly men, characterized by prostate enlargement and bladder outlet obstruction, leading to symptoms such as frequent urination, urgency, and difficulty urinating. The pathogenesis of BPH involves factors such as aging, hormonal metabolic abnormalities, inflammatory responses, and imbalances in cell proliferation and apoptosis. Currently, the main treatment methods for BPH include medication, physical therapy, and surgical intervention. However, medication may cause side effects like sexual dysfunction and hypotension, physical therapy has limited efficacy, and surgery carries risks and postoperative complications. Therefore, there is an urgent need to find safer and more effective treatment options. Traditional Chinese medicine (TCM), with its focus on treatment based on syndrome differentiation and a holistic approach, offers therapeutic advantages through multiple pathways and mechanisms. Recent studies have shown that TCM regulates pathways such as phosphoinositide-3-kinase/protein kinase B (PI3K/Akt), nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPK), nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE), androgen receptor (AR), transforming growth factor-β (TGF-β)/Smad, and hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) to inhibit oxidative stress and inflammatory response, reduce prostate cell proliferation, and promote apoptosis, thus exerting therapeutic effects. This article summarizes and analyzes the roles of these signaling pathways in the occurrence and development of BPH and the mechanisms of TCM intervention, aiming to provide scientific evidence for clinical treatment and drug development for BPH.
10.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.

Result Analysis
Print
Save
E-mail