1.Proteomics and Network Pharmacology Reveal Mechanism of Xiaoer Huatan Zhike Granules in Treating Allergic Cough
Youqi DU ; Yini XU ; Jiajia LIAO ; Chaowen LONG ; Shidie TAI ; Youwen DU ; Song LI ; Shiquan GAN ; Xiangchun SHEN ; Ling TAO ; Shuying YANG ; Lingyun FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):69-79
ObjectiveTo explore the pharmacological mechanism involved in the treatment of allergic cough (AC) by Xiaoer Huatan Zhike granules (XEHT) based on proteomics and network pharmacology. MethodsAfter sensitization by intraperitoneal injection of 1 mL suspension containing 2 mg ovalbumin (OVA) and 100 mg aluminum hydroxide, a guinea pig model of allergic cough was constructed by nebulization with 1% OVA. The modeled guinea pigs were randomized into the model, low-, medium- and high-dose (1, 5, 20 g·kg-1, respectively) XEHT, and sodium montelukast (1 mg·kg-1) groups (n=6), and another 6 guinea pigs were selected as the blank group. The guinea pigs in drug administration groups were administrated with the corresponding drugs by gavage, and those in the blank and model groups received the same volume of normal saline by gavage, 1 time·d-1. After 10 consecutive days of drug administration, the guinea pigs were stimulated by 1% OVA nebulization, and the coughs were observed. The pathological changes in the lung tissue were observed by hematoxylin-eosin staining. The enzyme-linked immunosorbent assay was performed to measure the levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF) and immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum. Immunohistochemistry (IHC) was employed to observe the expression of IL-6 and TNF-α in the lung tissue. Transmission electron microscopy was employed observe the alveolar type Ⅱ epithelial cell ultrastructure. Real-time PCR was employed to determine the mRNA levels of IL-6, interleukin-1β (IL-1β), and TNF-α in the lung tissue. Label-free proteomics was used to detect the differential proteins among groups. Network pharmacology was used to predict the targets of XEHT in treating AC. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to search for the same pathways from the results of proteomics and network pharmacology. ResultsCompared with the blank group, the model group showed increased coughs (P<0.01), elevated levels of CRP, TNF-α, IL-6, and MDA and lowered level of SOD in the BALF (P<0.05, P<0.01), elevated levels of IgA and IgG in the serum (P<0.05, P<0.01), congestion of the lung tissue and infiltration of inflammatory cells, increased expression of IL-6 and TNF-α (P<0.01), large areas of low electron density edema in type Ⅱ epithelial cells, obvious swelling and vacuolization of the organelles, karyopyknosis or sparse and dissolved chromatin, and up-regulated mRNA levels of IL-6, IL-1β, and TNF-α (P<0.01). Compared with the model group, the drug administration groups showed reduced coughs (P<0.01), lowered levels of CRP, TNF-α, IL-6, and MDA and elevated level of SOD in the BALF (P<0.05, P<0.01), alleviated lung tissue congestion, inflammatory cell infiltration, and type Ⅱ epithelial cell injury, and decreased expression of IL-6 and TNF-α (P<0.01). In addition, the medium-dose XEHT group and the montelukast sodium group showcased lowered serum levels of IgA and IgG (P<0.05, P<0.01). The medium- and high-dose XEHT groups and the montelukast sodium showed down-regulated mRNA levels of IL-6, IL-1β, and TNF-α and the low-dose XEHT group showed down-regulated mRNA levels of IL-6 and TNF-α (P<0.05, P<0.01). Phospholipase D, mammalian target of rapamycin (mTOR), and epidermal growth factor receptor family of receptor tyrosine kinase (ErbB) signaling pathways were the common pathways predicted by both proteomics and network pharmacology. ConclusionProteomics combined with network pharmacology reveal that XEHT can ameliorate AC by regulating the phospholipase D, mTOR, and ErbB signaling pathways.
2.Astrocytes in The Central Nervous System Regulate Myelination and Remyelination Through Multiple Mechanisms
Wen-Xiao XING ; Fu-Cheng LUO ; Tao LÜ
Progress in Biochemistry and Biophysics 2025;52(7):1792-1803
In the central nervous system (CNS), the myelin sheath, a specialized membrane structure that wraps around axons, is formed by oligodendrocytes through a highly coordinated spatiotemporal developmental program. The process begins with the directed differentiation of neural precursor cells into oligodendrocyte precursor cells (OPCs), followed by their migration, proliferation, differentiation, and maturation, ultimately leading to the formation of a multi-segmental myelin sheath structure. Recent single-cell sequencing research has revealed that this process involves the temporal regulation of over 200 key genes, with a regulatory network composed of transcription factors such as Sox10 and Olig2 playing a central role. The primary function of the myelin sheath is to accelerate nerve signal transmission and protect nerve fibers from damage. Its insulating properties not only increase nerve conduction speed by 50-100 times but also ensure the long-term functional integrity of the nervous system by maintaining axonal metabolic homeostasis and providing mechanical protection. The pathological effects of myelin sheath injury exhibit a cascade amplification pattern: acute demyelination leads to action potential conduction block, while chronic lesions may cause axonal damage and neuronal death in severe or long-term cases, ultimately resulting in irreversible neurological dysfunction with neurodegenerative characteristics. Multiple sclerosis (MS) is a neurodegenerative disease characterized by chronic inflammatory demyelination of the CNS. Clinically, the distribution of lesions in MS exhibits spatial heterogeneity, which is closely related to differences in the regenerative capacity of oligodendrocytes within the local microenvironment. Emerging evidence suggests that astrocytes form a dynamic “neural-immune-metabolic interface” and play a multidimensional regulatory role in myelin development and regeneration by forming heterogeneous populations composed of different subtypes. During embryonic development, astrocytes induce the targeted differentiation of OPCs in the ventricular region through the Wnt/β-catenin pathway. In the mature stage, they secrete platelet-derived growth factor AA (PDGF-AA) to establish a chemical gradient that guides the precise migration of OPCs along axonal bundles. Notably, astrocytes also provide crucial metabolic support by supplying energy substrates for high-energy myelin formation through the lactate shuttle mechanism. In addition, astrocytes play a dual role in myelin regulation. During the acute injury phase, reactive astrocytes establish a triple defense system within 72 h: upregulating glial fibrillary acidic protein (GFAP) to form scars that isolate lesions, activating the JAK-STAT3 regeneration pathway in oligodendrocytes via leukemia inhibitory factor (LIF), and releasing tumor necrosis factor-stimulated gene-6 (TSG-6) to inhibit excessive microglial activation. However, in chronic neurodegenerative diseases, the phenotypic transformation of astrocytes contributes to microenvironmental deterioration. The secretion of chondroitin sulfate proteoglycans (CSPGs) inhibits OPC migration via the RhoA/ROCK pathway, while the persistent release of reactive oxygen species (ROS) leads to mitochondrial dysfunction and the upregulation of complement C3-mediated synaptic pruning. This article reviews the mechanisms by which astrocytes regulate the development and regeneration of myelin sheaths in the CNS, with a focus on analyzing the multifaceted roles of astrocytes in this process. It emphasizes that astrocytes serve as central hubs in maintaining myelin homeostasis by establishing a metabolic microenvironment and signaling network, aiming to provide new therapeutic strategies for neurodegenerative diseases such as multiple sclerosis.
3.Analysis of factors for international normalized ratio levels>3.0 in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement
Shengmin ZHAO ; Bo FU ; Fengying ZHANG ; Weijie MA ; Shourui HUANG ; Qian LI ; Huan TAO ; Li DONG ; Jin CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):655-662
Objective To investigate the factors influencing international normalized ratio (INR)>3.0 in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement. Methods A retrospective analysis was performed on the clinical data of patients who underwent mechanical heart valve replacement surgery and received warfarin anticoagulation therapy at West China Hospital of Sichuan University from January 1, 2011 to June 30, 2022. Based on the discharge INR values, patients were divided into two groups: an INR≤3.0 group and an INR>3.0 group. The factors associated with INR>3.0 at the time of discharge were analyzed. Results A total of 8901 patients were enrolled, including 3409 males and 5492 females, with a median age of 49.3 (43.5, 55.6) years. The gender, body mass index (BMI), New York Heart Association (NYHA) cardiac function grading, INR, glutamic oxaloacetic transaminase, and preoperative prothrombin time (PT) were statistically different between the two groups (P<0.05). Multivariate logistic regression analysis revealed that lower BMI, preoperative PT>15 s, and mitral valve replacement were independent risk factors for INR>3.0 at discharge (P<0.05). Conclusion BMI, preoperative PT, and surgical site are factors influencing INR>3.0 at discharge in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement. Special attention should be given to patients with lower BMI, longer preoperative PT, and mitral valve replacement to avoid excessive anticoagulation therapy.
4.Role of TIM3 Pathway in Immune Pathogenesis and Targeted Therapy of Myelodysplastic Syndrome
Xinyu GUO ; Shunjie YU ; Jinglian TAO ; Yingshuai WANG ; Xiaotong REN ; Zhaoyun LIU ; Rong FU ; Zonghong SHAO ; Lijuan LI
Cancer Research on Prevention and Treatment 2025;52(9):731-735
Myelodysplastic syndrome (MDS), a myeloid tumor derived from the malignant clones of hematopoietic stem cells, has an annually increasing incidence. The contemporary research direction has shifted to analyzing the synergistic effect of immune surveillance collapse and abnormal bone marrow microenvironment in the pathological process of MDS. Against this backdrop, the immune checkpoint molecule TIM3 has emerged as a key target because of its persistently high expression on the surface of important immune cells such as T and NK cells. The abnormal activation of the TIM3 pathway is the mechanism by which solid tumors and hematological malignancies achieve immune escape and is a key hub in the formation of immune exhaustion phenotypes. This work integrates the original discoveries of our team with the latest international progress, systematically demonstrating the bidirectional regulatory network of TIM3 between the malignant clone proliferation of MDS and the immunosuppressive microenvironment. Integrating the evidence from emerging clinical trials allows us to consider the clinical significance of TIM3-targeted blocking for MDS, providing a transformative path to overcome the resistance of traditional treatments and marking a new chapter in the active immune reconstitution of MDS treatment.
5.A Case of Neurofibromatosis Type 1 Complicated with Bilateral Sensorineural Hearing Loss
Ruzhen GAO ; Xinmiao FAN ; Wei GU ; Tengyu YANG ; Zhuhua ZHANG ; Tao WANG ; Mingsheng MA ; Zenan XIA ; Hanhui FU ; Yaping LIU ; Xiaowei CHEN
JOURNAL OF RARE DISEASES 2025;4(3):348-354
Neurofibromatosis type 1 (NF1) presents with a diverse range of symptoms that can affect the skin, bones, eyes, central nervous system, and other organs. This article reports the diagnosis and treatment process of a patient with NF1 complicated by bilateral severe-to-profound sensorineural hearing loss. Genetic testing revealed a heterozygous variant of
6.Bibliometric and visual analysis of artificial intelligence applications in pneumoconiosis and its complications
Yu FU ; Xiangpei LYU ; Tao LI ; Huanqiang WANG
Journal of Environmental and Occupational Medicine 2025;42(10):1216-1224
Background Pneumoconiosis, a group of lung disease caused by long-term inhalation of occupational dust, features progressive development, irreversibility, and a high incidence of complications. It seriously endangers the health of the occupational population and exacerbates the socioeconomic burden. Objective To understand the development and major research themes of artificial intelligence research concerning pneumoconiosis and its complications. Methods Relevant academic papers before 2024-10-01 were retrieved from China National Knowledge Infrastructure and Web of Science, and analyzed separately according to the author, institutions, and keywords, then visualized with Citespace, the Bibliometrix package in R, and VOSviewer software. Results This study included
7.Herbal Textual Research on Bletillae Rhizoma in Famous Classical Formulas
Dan ZHAO ; Tao ZHOU ; Chaolei LUO ; Dewei GAN ; Lingling LIU ; Chuanzhi KANG ; Zhikun WU ; Xu LI ; Yan FU ; Guoqiong CAO ; Yongping ZHANG ; Chenghong XIAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):77-88
In order to provide basic information for the utilization and development of famous classical formulas containing Bletillae Rhizoma, this article systematically analyzes the historical evolution of the name, origin, harvesting and processing of Bletillae Rhizoma by reviewing the ancient materia medica, prescription books, medical books and modern literature. The research results showed that Baiji(白及) was the main name, some scholars took Baiji(白芨) as its main name, and there were many other names such as Baiji(白给), Baigen(白根), Baiji(白苙). The mainstream source of Bletillae Rhizoma was the tubers of Bletilla striata, and drying, large, white, solid, root-free and skin removed completely were the good quality standards. With the promotion of wild to cultivated medicinal materials, there were certain differences between their traits, and the quality evaluation indexes should be adjusted accordingly. The origin of records in the past dynasties was widely distributed, with Guizhou and Sichuan having high production and good quality in modern times. The harvesting period is mostly in spring and autumn, and harvested in autumn was better. The processing and processing technology is relatively simple, and it was used fresh or powdered in past dynasties, while it is mainly sliced for raw use in modern times. Based on the results, it is suggested that the tubers of Bletilla striata of Orchidaceae should be used in the famous classical formulas, and it should be uniformly written as Baiji(白及). And if the original formula indicates the requirement of processing, it should be operated according to the requirement, if the requirement of processing is not indicated, it can be used in raw form as medicine.
8.Melatonin inhibits arrhythmias induced by increased late sodium currents in ventricular myocytes
Jie WEN ; Han-feng LIU ; Yan-yan YANG ; Ze-fu ZHANG ; An-tao LUO ; Zhen-zhen CAO ; Ji-hua MA
Acta Pharmaceutica Sinica 2024;59(1):143-151
Melatonin (Mel) has been shown to have cardioprotective effects, but its action on ion channels is unclear. In this experiment, we investigated the inhibitory effect of Mel on late sodium currents (INa.L) in mouse ventricular myocytes and the anti-arrhythmic effect at the organ level as well as its mechanism. The whole-cell patch clamp technique was applied to record the ionic currents and action potential (AP) in mouse ventricular myocytes while the electrocardiogram (ECG) and monophasic action potential (MAP) were recorded simultaneously in mouse hearts using a multichannel acquisition and analysis system. The results demonstrated that the half maximal inhibitory concentration (IC50) values of Mel on transient sodium current (INa.T) and specific INa.L opener 2 nmol·L-1 sea anemone toxins II (ATX II) increased INa.L were 686.615 and 7.37 μmol·L-1, respectively. Mel did not affect L-type calcium current (ICa.L), transient outward current (Ito), and AP. In addition, 16 μmol·L-1 Mel shortened ATX II-prolonged action potential duration (APD), suppressed ATX II-induced early afterdepolarizations (EADs), and significantly reduced the incidence of ventricular tachycardia (VT) and ventricular fibrillation (VF) in Langendorff-perfused mouse hearts. In conclusion, Mel exerted its antiarrhythmic effects principally by blocking INa.L, thus providing a significant theoretical basis for new clinical applications of Mel. Animal welfare and experimental process are in accordance with the regulations of the Experimental Animal Ethics Committee of Wuhan University of Science and Technology (2023130).
9.Research status on the mechanism of traditional Chinese medicine regulating TGF-β1/Smads signaling pathway to intervene liver fibrosis
Yong-Biao TAO ; Shi-Rui YANG ; Long-De WANG ; Ya-Na WU ; Zhi-Ming ZHANG ; Fu LI
The Chinese Journal of Clinical Pharmacology 2024;40(6):918-922
Hepatic fibrosis(HF)is a pathophysiological outcome of chronic liver injury and is characterized by excessive accumulation of extracellular matrix protein.A number of studies have confirmed that the signaling pathways formed by transforming growth factor-β1(TGF-β1)and its downstream Smad family play an important role in the occurrence and development of HF,and the traditional Chinese medicine(TCM)research targeting this pathway is currently a hot spot in the reversal of HF.Therefore,taking TGF-β1/Smads signaling pathway as the entry point,this paper reviewed the mechanism of action of TCM compound formula and single drug extract in intervening TGF-β1/Smad pathway and related factors upstream and downstream of the pathway to reverse HF in recent years,revealed the targeted therapeutic effect of TCM,and provided new strategies for clarifying the mechanism of TCM.
10.Role of aryl hydrocarbon receptor in toxic effects of emerging environmental pollutants
Mingxuan ZHANG ; Baoqiang FU ; Jinhao LI ; Kang WANG ; Yan JIANG ; Tao CHEN
Journal of Environmental and Occupational Medicine 2024;41(12):1349-1353
In recent years, an increasing number of emerging environmental pollutants have been identified, garnering widespread attention. Many of these pollutants are characterized by their environmental persistence and bioaccumulation, which pose significant threats to both the ecological environment and human health. However, the molecular mechanisms underlying their effects remain unclear, limiting our ability to assess their adverse impacts and develop effective protective measures. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor traditionally known to be activated by dioxins and polycyclic aromatic hydrocarbons (PAHs) and is involved in the metabolism of exogenous chemicals. Recent research has shown that the AHR can be activated by a diverse range of exogenous and endogenous chemicals and participates in various biological processes. Studies have demonstrated that AHR mediates the toxic effects of emerging environmental pollutants such as perfluorooctane sulfonamide (PFOSA) and N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine quinone (6PPDQ). This paper provided an overview of the AHR activation and the toxic effects induced by emerging environmental pollutants, with a focus on how the AHR activation interacts with multiple signaling pathways. The significance of these interactions in environmental risk assessment and toxicological research was also discussed. We aim to provide a scientific basis for environmental protection and risk assessment.

Result Analysis
Print
Save
E-mail