1.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
2.Gene frequencies and polymorphism of the MNS blood group system in the Han population of voluntary blood donors in Suzhou
Zihao XU ; Xiaoyan FU ; Zhen LIU ; Jia JIANG ; Yiming JIN
Chinese Journal of Blood Transfusion 2025;38(3):397-401
[Objective] To investigate the antigen and gene frequency distribution of the MNS blood group system in the Han population of voluntary blood donors in Suzhou, and to explore the polymorphism of rare MNS blood group genes, in order to improve the construction of the local rare blood group database. [Methods] A total of 8 034 whole blood samples were randomly collected from Han blood donors at our station from October 2023 to June 2024. The MNS blood group phenotypes were identified using serological methods. Gene frequencies were analyzed and compared with those of ethnic populations in other regions. Rare MNS phenotype samples were subjected to gene sequencing. [Results] The distribution of MNS blood group system phenotypes within the population was as follows: the MM, NN, and MN phenotypes accounted for 23.00%, 27.12%, and 49.88% respectively; the SS, ss, and Ss phenotypes accounted for 0.30%, 90.99%, and 8.70% respectively. The gene frequencies of M, N, S, and s were 0.4794, 0.5206, 0.0465, and 0.9534 respectively. Chi-squared tests confirmed adherence to Hardy-Weinberg equilibrium with P-values of 0.997 and 0.349, showing statistical significance compared to some other regional ethnic populations (P<0.05). Additionally, one rare serological phenotype, S-s-, with a frequency of 0.01%, was identified. [Conclusion] The MNS blood group system in the Han population of voluntary blood donors in Suzhou exhibits polymorphism and regional distribution characteristics. Gene frequencies differ from those observed in other regions of China. It is essential to enhance the establishment of a rare blood type database in Suzhou to provide data support for precise clinical transfusion.
3.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
4.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
5.Rapid health technology assessment of toripalimab combined with chemotherapy in the treatment of locally advanced or metastatic non-small cell lung cancer
Yuping YANG ; Yuan ZHOU ; Qirui TAI ; Mili SHI ; Yijie SHI ; Jieya WANG ; Huan HU ; Yuan ZHANG ; Yi LIU ; Yue WANG
China Pharmacy 2025;36(20):2593-2598
OBJECTIVE To evaluate the efficacy, safety and cost-effectiveness of toripalimab (Tor) combined with chemotherapy (CT) in the treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC). METHODS PubMed, the Cochrane Library, Embase, Web of Science, CBM, CNKI, Wanfang Data, and Health Technology Assessment (HTA) related websites were searched to collect the HTA reports, systematic reviews/meta-analyses and pharmacoeconomic studies of Tor+CT in the treatment of locally advanced or metastatic NSCLC from database/website inception to March 31, 2025. After data extraction and quality evaluation, the results of the included studies were analyzed descriptively. RESULTS A total of eleven studies were included, involving five systematic reviews/meta-analyses, and six pharmacoeconomic studies. Among the five systematic reviews/ meta-analyses, two were of high quality, while there was one each of moderate, low, and very low quality. All six pharmacoeconomic studies were of good quality. In terms of efficacy, compared with CT, Tor+CT significantly improved patients’ progression-free survival (PFS) and overall survival (P<0.05). In addition, compared with ipilimumab+CT, durvalumab, durvalumab+tremelimumab and sugemalimab+CT, Tor+CT could also improve the PFS (P<0.05). In terms of safety, there was no significant difference in the incidence of grade≥3 adverse events between patients receiving Tor+CT and CT (P>0.05); while Tor+CT had a lower incidence of grade≥3 adverse E-mail: events, compared with camrelizumab+CT, pembrolizumab+ 3233255290@qq.com ipilimumab, nivolumab+CT and atezolizumab+CT (P<0.05).In terms of cost-effectiveness, Tor+CT treatment had certain cost-effectiveness advantages, compared with CT. CONCLUSIONS Compared with CT, other programmed death-1/programmed death-ligand 1 inhibitors alone, or their combination with CT, Tor+CT for the treatment of locally advanced or metastatic NSCLC has good efficacy, safety and cost-effectiveness.
6.The role of selenoproteins in adipose tissue and obesity.
Yun-Fei ZHAO ; Yu-Hang SUN ; Tai-Hua JIN ; Yue LIU ; Yang-Di CHEN ; Wan XU ; Qian GAO
Acta Physiologica Sinica 2025;77(5):939-955
Selenoproteins, as the active form of selenium, play an important role in various physiological and pathological processes, such as anti-oxidation, anti-tumor, immune response, metabolic regulation, reproduction and aging. Although the expression level of selenoproteins in adipose tissue is significantly influenced by dietary selenium intake, it is closely related to the homeostasis of adipose tissue. In this review, we summarized the role of selenoproteins in the physiological function of adipose tissue and the pathogenesis of obesity in recent years, in order to provide a rationale for developing potential therapeutic agents for the treatment of obesity and related metabolic diseases.
Selenoproteins/metabolism*
;
Adipose Tissue/physiology*
;
Obesity/metabolism*
;
Humans
;
Animals
;
Selenium
7.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
8.A Screening Study of GP.Mur Antigen in Blood Donors in Jiangsu Region.
Lei SHAO ; Tai-Xiang LIU ; Ling MA ; Fang ZHAO ; Ruo-Yang ZHANG ; Hong LIN
Journal of Experimental Hematology 2025;33(4):1150-1154
OBJECTIVE:
To investigate the distribution of GP.Mur antigen in blood donors in Jiangsu Province.
METHODS:
Genomic DNA was extracted from 1 114 blood donors in Jiangsu region. PCR-SSP was performed to amplify GP.Mur, and gene analysis was conducted by direct sequencing of the PCR products. The frequency of GP.Mur in the blood donor population of Jiangsu region was calculated.
RESULTS:
Out of 1 114 randomly selected blood samples, 11 positive bands were detected during amplification. Direct sequencing analysis revealed that among the 11 positive samples, 4 were homozygous for GYP .Mur genotype, 3 were heterozygous for GYP .Mur genotype, and the remaining 4 samples were identified as GYP .HF genotype.
CONCLUSION
This study analyzed the distribution of the GP.Mur antigen and preliminary obtained the frequency data in the blood donor population in Jiangsu region. Further in-depth research on this blood group is of great importance in guiding clinical blood transfusion practices and ensuring transfusion safety.
Humans
;
Blood Donors
;
China
;
Genotype
;
Blood Group Antigens/genetics*
;
Polymerase Chain Reaction
;
Glycophorins/genetics*
;
Gene Frequency
9.Application of Third-Generation Sequencing Technology in RHD Genotyping of a Chinese Pedigree with Weak D Phenotype.
Ling MA ; Tai-Xiang LIU ; Li-Li SHI ; Chen-Chen FENG ; Ruo-Yang ZHANG ; Fang ZHAO
Journal of Experimental Hematology 2025;33(4):1199-1202
OBJECTIVE:
To investigate the molecular mechanism of weak D phenotype in a Chinese family.
METHODS:
Routine Rh typing tests were performed first, and RHD exons 1-10 of the proband and his family members were sequenced by first-generation sequencing. RHD zygosity was also determined. Third-generation sequencing was used to analyze the haplotypes of the RHD gene.
RESULTS:
The proband showed a weak D serological phenotype. First-generation sequencing revealed a c.787G>A point mutation in exon 5. The family pedigree investigation showed that the proband and his younger sister had the same serological phenotype and molecular mechanism. His father carried this gene mutation, while his mother and younger brother were normal. Hybrid box was not detected, suggesting that all the family members did not have a haplotype with a complete deletion of the RHD gene. The results of third-generation sequencing showed that the proband and his sister inherited the weak D allele from their father and the non-functional allele RHD -CE(3-9)-D from their mother, respectively.
CONCLUSION
Third-generation sequencing technology enables haplotype analysis of the RHD gene and can detect complex genotypes such as genetic exchanges between RHD and RHCE combined with other mutations.
Female
;
Humans
;
Male
;
Alleles
;
Exons
;
Genotype
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Pedigree
;
Phenotype
;
Rh-Hr Blood-Group System/genetics*
;
East Asian People/genetics*
10.Intervention of natural products targeting novel mechanisms after myocardial infarction.
Guangjie TAI ; Renhua LIU ; Tian LIN ; Jiancheng YANG ; Xiaoxue LI ; Ming XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):658-672
Myocardial infarction is a cardiovascular disease (CVD) with high morbidity and mortality, which can trigger a cascade of cardiac pathophysiological changes, including fibrosis, inflammation, ischemia-reperfusion injury (IRI), and ventricular remodeling, ultimately leading to heart failure (HF). While conventional pharmacological treatments and clinical reperfusion therapy may enhance short-term prognoses and emergency survival rates, both approaches have limitations and adverse effects. Natural products (NPs) are extensively utilized as therapeutics globally, with some demonstrating potentially favorable therapeutic effects in preclinical and clinical pharmacological studies, positioning them as potential alternatives to modern drugs. This review comprehensively elucidates the pathophysiological mechanisms during myocardial infarction and summarizes the mechanisms by which NPs exert cardiac beneficial effects. These include classical mechanisms such as inhibition of inflammation and oxidative stress, alleviation of cardiomyocyte death, attenuation of cardiac fibrosis, improvement of angiogenesis, and emerging mechanisms such as cardiac metabolic regulation and histone modification. Furthermore, the review emphasizes the modulation by NPs of novel targets or signaling pathways in classical mechanisms, including other forms of regulated cell death (RCD), endothelial-mesenchymal transition, non-coding ribonucleic acids (ncRNAs) cascade, and endothelial progenitor cell (EPC) function. Additionally, NPs influencing a particular mechanism are categorized based on their chemical structure, and their relevance is discussed. Finally, the current limitations and prospects of NPs therapy are considered, highlighting their potential for use in myocardial infarction management and identifying issues that require urgent attention.
Humans
;
Myocardial Infarction/genetics*
;
Biological Products/therapeutic use*
;
Animals
;
Oxidative Stress/drug effects*
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail