1.Associative Learning-Induced Synaptic Potentiation at the Two Major Hippocampal CA1 Inputs for Cued Memory Acquisition.
Bing-Ying WANG ; Bo WANG ; Bo CAO ; Ling-Ling GU ; Jiayu CHEN ; Hua HE ; Zheng ZHAO ; Fujun CHEN ; Zhiru WANG
Neuroscience Bulletin 2025;41(4):649-664
Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording; this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways.
Animals
;
CA1 Region, Hippocampal/physiology*
;
Male
;
Association Learning/physiology*
;
Neuronal Plasticity/physiology*
;
Cues
;
Memory/physiology*
;
Synapses/physiology*
;
Conditioning, Classical/physiology*
;
Excitatory Postsynaptic Potentials/physiology*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Rats
;
Optogenetics
2.Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network.
Yanqing QI ; Rui ZHAO ; Jifeng TIAN ; Jiangteng LU ; Miao HE ; Yilin TAI
Neuroscience Bulletin 2024;40(11):1774-1788
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Animals
;
Neuronal Plasticity/physiology*
;
Cerebral Cortex/cytology*
;
Axons/physiology*
;
Nerve Net/physiology*
;
Humans
;
Synapses/physiology*
;
GABAergic Neurons/physiology*
3.Loss of TET Activity in the Postnatal Mouse Brain Perturbs Synaptic Gene Expression and Impairs Cognitive Function.
Ji-Wei LIU ; Ze-Qiang ZHANG ; Zhi-Chuan ZHU ; Kui LI ; Qiwu XU ; Jing ZHANG ; Xue-Wen CHENG ; Han LI ; Ying SUN ; Ji-Jun WANG ; Lu-Lu HU ; Zhi-Qi XIONG ; Yongchuan ZHU
Neuroscience Bulletin 2024;40(11):1699-1712
Conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family proteins leads to the accumulation of 5hmC in the central nervous system; however, the role of 5hmC in the postnatal brain and how its levels and target genes are regulated by TETs remain elusive. We have generated mice that lack all three Tet genes specifically in postnatal excitatory neurons. These mice exhibit significantly reduced 5hmC levels, altered dendritic spine morphology within brain regions crucial for cognition, and substantially impaired spatial and associative memories. Transcriptome profiling combined with epigenetic mapping reveals that a subset of genes, which display changes in both 5hmC/5mC levels and expression patterns, are involved in synapse-related functions. Our findings provide insight into the role of postnatally accumulated 5hmC in the mouse brain and underscore the impact of 5hmC modification on the expression of genes essential for synapse development and function.
Animals
;
Brain/growth & development*
;
5-Methylcytosine/metabolism*
;
Mice
;
Synapses/genetics*
;
Proto-Oncogene Proteins/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Dioxygenases/metabolism*
;
Cognition/physiology*
;
Gene Expression
;
Mixed Function Oxygenases/metabolism*
;
Epigenesis, Genetic
;
Mice, Knockout
;
Mice, Inbred C57BL
4.Bi-directional Control of Synaptic Input Summation and Spike Generation by GABAergic Inputs at the Axon Initial Segment.
Ziwei SHANG ; Junhao HUANG ; Nan LIU ; Xiaohui ZHANG
Neuroscience Bulletin 2023;39(1):1-13
Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.
Axon Initial Segment
;
Axons/physiology*
;
Neurons
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Interneurons/physiology*
;
Action Potentials/physiology*
5.Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex.
Ankang HU ; Rui ZHAO ; Baihui REN ; Yang LI ; Jiangteng LU ; Yilin TAI
Neuroscience Bulletin 2023;39(7):1050-1068
The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
Mice
;
Animals
;
Axon Initial Segment
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Cerebral Cortex
;
Axons/physiology*
6.A Critical Role for γCaMKII in Decoding NMDA Signaling to Regulate AMPA Receptors in Putative Inhibitory Interneurons.
Xingzhi HE ; Yang WANG ; Guangjun ZHOU ; Jing YANG ; Jiarui LI ; Tao LI ; Hailan HU ; Huan MA
Neuroscience Bulletin 2022;38(8):916-926
CaMKII is essential for long-term potentiation (LTP), a process in which synaptic strength is increased following the acquisition of information. Among the four CaMKII isoforms, γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons (LTPE→I). However, the molecular mechanism underlying how γCaMKII mediates LTPE→I remains unclear. Here, we show that γCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10-30 Hz range. Following stimulation, γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95. Knocking down γCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors (AMPARs) in putative inhibitory interneurons, which are restored by overexpression of γCaMKII but not its kinase-dead form. Taken together, these data suggest that γCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Hippocampus/metabolism*
;
Interneurons/physiology*
;
Long-Term Potentiation/physiology*
;
N-Methylaspartate/metabolism*
;
Receptors, AMPA/physiology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Synapses/physiology*
7.Lighting Up Neural Circuits by Viral Tracing.
Liyao QIU ; Bin ZHANG ; Zhihua GAO
Neuroscience Bulletin 2022;38(11):1383-1396
Neurons are highly interwoven to form intricate neural circuits that underlie the diverse functions of the brain. Dissecting the anatomical organization of neural circuits is key to deciphering how the brain processes information, produces thoughts, and instructs behaviors. Over the past decades, recombinant viral vectors have become the most commonly used tracing tools to define circuit architecture. In this review, we introduce the current categories of viral tools and their proper application in circuit tracing. We further discuss some advances in viral tracing strategy and prospective innovations of viral tools for future study.
Synapses/physiology*
;
Prospective Studies
;
Neurons/physiology*
;
Genetic Vectors
;
Brain/physiology*
;
Neural Pathways/physiology*
8.Progress on the role of synaptic cell adhesion molecules in stress.
Acta Physiologica Sinica 2020;72(2):220-226
Synaptic cell adhesion molecules (CAMs) are a type of membrane surface glycoproteins that mediate the structural and functional interactions between pre- and post-synaptic sites. Synaptic CAMs dynamically regulate synaptic activity and plasticity, and their expression and function are modulated by environmental factors. Synaptic CAMs are also important effector molecules of stress response, and mediate the adverse impact of stress on cognition and emotion. In this review, we will summarize the recent progress on the role of synaptic CAMs in stress, and aim to provide insight into the molecular mechanisms and drug development of stress-related disorders.
Cell Adhesion
;
Cell Adhesion Molecules
;
physiology
;
Humans
;
Neuronal Plasticity
;
Stress, Physiological
;
Stress, Psychological
;
Synapses
9.Neuroligins Differentially Mediate Subtype-Specific Synapse Formation in Pyramidal Neurons and Interneurons.
Qiang-Qiang XIA ; Jing XU ; Tai-Lin LIAO ; Jie YU ; Lei SHI ; Jun XIA ; Jian-Hong LUO ; Junyu XU
Neuroscience Bulletin 2019;35(3):497-506
Neuroligins (NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtype-specific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affected GABAergic synapse formation more specifically than NL3, and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.
Animals
;
Cell Adhesion Molecules, Neuronal
;
physiology
;
Cells, Cultured
;
Cerebral Cortex
;
embryology
;
physiology
;
GABAergic Neurons
;
physiology
;
Interneurons
;
physiology
;
Membrane Proteins
;
physiology
;
Nerve Tissue Proteins
;
physiology
;
Protein Isoforms
;
physiology
;
Pyramidal Cells
;
physiology
;
Rats, Sprague-Dawley
;
Synapses
;
physiology
10.Role of secretory C1q protein in the formation and regulation of synapse.
Acta Physiologica Sinica 2019;71(3):471-477
The C1q family is one of the subcomponents of the C1 complex that recognizes immune complexes and initiates the classical pathway of the complement system. In addition, as a pattern recognition receptor (PRR), the C1q family binds to a wide variety of ligands. As a member of the C1q family, the secretory C1q includes several subtypes. The main subtypes are cerebellin (Cbln) and C1q-like protein (C1ql). In the nervous system, secretory C1q is involved in the formation and regulation of various types of synapses, thus secretory C1q is closely related to diseases of the central nervous system. In this article, we review the role of secretory C1q in synapse formation and regulation, and its relationship with some diseases of the central nervous system.
Antigen-Antibody Complex
;
Central Nervous System
;
Complement C1q
;
physiology
;
Humans
;
Synapses
;
physiology

Result Analysis
Print
Save
E-mail