1.Itaconate derivative 4-OI inhibits M1 macrophage polarization and restores its impaired function in immune thrombocytopenia through metabolic reprogramming.
Qiang LIU ; Anli LIU ; Shaoqiu LENG ; Xiaoyu ZHANG ; Xiaolin WANG ; Zhang CHENG ; Shuwen WANG ; Jun PENG ; Qi FENG
Chinese Medical Journal 2025;138(16):2006-2015
BACKGROUND:
Macrophage polarization anomalies and dysfunction play a crucial role in the pathogenesis of immune thrombocytopenia (ITP). Itaconate is a Krebs cycle-derived immunometabolite synthesized by myeloid cells to modulate cellular metabolism and inflammatory responses. This study aimed to evaluate the immunoregulatory effects of an itaconate derivative on macrophages in patients with ITP.
METHODS:
Peripheral blood-derived macrophages from patients with ITP and healthy controls were treated with 4-octyl itaconate (4-OI), a derivative of itaconate that can penetrate the cell membrane. Macrophage polarization, antigen-presenting functions, and phagocytic capability were measured via flow cytometry and enzyme-linked immunosorbent assay (ELISA). Macrophage glycolysis in patients with ITP and the metabolic regulatory effect of 4-OI were detected using a Seahorse XFe96 Analyzer. An active murine model of ITP was used to evaluate the therapeutic effects of 4-OI in vivo .
RESULTS:
4-OI reduced the levels of CD80 and CD86 in M1 macrophages and suppressed the release of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 pro-inflammatory cytokines, suggesting that 4-OI could hinder the polarization of macrophages toward an M1 phenotype. We found that 4-OI pretreated M1 macrophages reduced the proliferation of CD4 + T cells and promoted the differentiation of regulatory T cells. In addition, after 4-OI treatment, the phagocytic capacity of M1 macrophages toward antibody-coated platelets decreased significantly in patients with ITP. In addition, the glycolytic function of M1 macrophages was elevated in individuals with ITP compared to those in healthy controls. 4-OI treatment downregulated glycolysis in M1 macrophages. The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) also inhibited the polarization of M1 macrophages and restored their functions. In vivo , 4-OI treatment significantly increased platelet counts in the active ITP murine model.
CONCLUSIONS
Itaconate derivative 4-OI inhibited M1 macrophage polarization and restored impaired functions through metabolic reprogramming. This study provides a novel therapeutic option for ITP.
Macrophages/metabolism*
;
Humans
;
Animals
;
Succinates/pharmacology*
;
Mice
;
Male
;
Female
;
Adult
;
Middle Aged
;
Flow Cytometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Enzyme-Linked Immunosorbent Assay
;
Purpura, Thrombocytopenic, Idiopathic/metabolism*
;
Glycolysis/drug effects*
;
Metabolic Reprogramming
2.4-Octyl itaconate inhibits synovitis in the mouse model of post-traumatic osteoarthritis and alleviates pain.
Yu-Zhen TANG ; Wan CHEN ; Bao-Yun XU ; Gang HE ; Xiu-Cheng FAN ; Kang-Lai TANG
Chinese Journal of Traumatology 2025;28(1):50-61
PURPOSE:
To investigate the pathological changes of the synovium in mice with post-traumatic osteoarthritis (PTOA) treated with 4-octyl itaconate (4-OI) and evaluate the therapeutic effects of 4-OI.
METHODS:
In the phenotypic validation experiment, the mice were randomly divided into 3 groups: wild-type (WT) group, sham group, and destabilization of the medial meniscus (DMM) group. Through MRI, micro-CT, and histological analysis, it was determined that the DMM surgery induced a mouse PTOA model with significant signs of synovitis. At 12 weeks post-DMM surgery, synovial tissues from the DMM group and WT group mice were collected for ribonucleic acid sequencing analysis. In the 4-OI treatment experiment, mice were randomly divided into the sham group, DMM group, DMM + 4-OI (50 mg/kg) group, and DMM + 4-OI (100 mg/kg) group. Von Frey tests and open field tests were conducted at intervals during the 12 weeks following the DMM surgery. After 12 weeks of surgery, the efficacy of 4-OI treatment on PTOA in mice was evaluated using MRI, micro-CT, histological analysis, and quantitative real-time polymerase chain reaction. Finally, we utilized network pharmacology analysis to predict the mechanism of 4-OI in treating PTOA synovitis and conducted preliminary validation. Statistical analysis was performed using one-way ANOVA and the Kruskal-Wallis test. Difference was considered statistically significant at p < 0.05.
RESULTS:
The DMM surgery effectively induced a PTOA mouse model, which displayed significant symptoms of synovitis. These symptoms included a notable increase in both the number of calcified tissues and osteophytes (p < 0.001), an enlargement of the calcified meniscus and synovial tissue volume (p < 0.001), and thickening of the synovial lining layer attributable to M1 macrophage accumulation (p = 0.035). Additionally, we observed elevated histological scores for synovitis (p < 0.001). Treatment with 4-OI inhibited the thickening of M1 macrophages in the synovial lining layer of PTOA mice (p < 0.001) and reduced fibrosis in the synovial stroma (p = 0.004). Furthermore, it reduced the histological scores of knee synovitis in PTOA mice (p = 0.006) and improved the inflammatory microenvironment associated with synovitis. Consequently, this treatment alleviated pain in PTOA mice (p < 0.001) and reduced spontaneous activity (p = 0.003). Bioinformatics and network pharmacology analyses indicated that 4-OI may exert its therapeutic effects by inhibiting the differentiation of synovial Th17 cells. Specifically, compared to the lipopolysaccharide stimulation group, 4-OI reduced the levels of positive regulatory factors of Th17 cell differentiation (IL-1: p < 0.001, IL-6: p < 0.001), key effector molecules (IL-17A: p < 0.001, IL-17F: p = 0.004), and downstream effector molecules in the IL-17 signaling pathway (CCL2: p < 0.001, MMP13: p < 0.001).
CONCLUSION
4-OI is effective in inhibiting synovitis in PTOA, thereby alleviating the associated painful symptoms.
Animals
;
Synovitis/etiology*
;
Mice
;
Osteoarthritis/etiology*
;
Disease Models, Animal
;
Male
;
Succinates/pharmacology*
;
Mice, Inbred C57BL
;
X-Ray Microtomography
3.Itaconic acid alleviates macrophage PANoptosis in sepsis-associated acute lung injury via inhibiting ninjurin-1-mediated plasma membrane rupture.
Mengrui CHEN ; Xiaohua TAN ; Wenjing ZHONG ; Hanxi SHA ; Liying LIANG ; Shaokun LIU
Journal of Central South University(Medical Sciences) 2025;50(6):970-985
OBJECTIVES:
Sepsis-associated acute lung injury (S-ALI) is one of the major causes of death in intensive care unit (ICU) patients, yet its mechanisms remain incompletely understood and effective therapies are lacking. Lytic cell death of macrophages is a key driver of the inflammatory cascade in S-ALI. PANoptosis, a newly recognized form of lytic cell death characterized by PANoptosome assembly and activation, involves plasma membrane rupture (PMR) mediated by ninjurin-1 (NINJ1), a recently identified pore-forming protein. Itaconic acid is known for its anti-inflammatory effects, but its role in macrophage PANoptosis during S-ALI is unclear. This study aims to investigate the protective effect of itaconic acid on macrophage PANoptosis in S-ALI to provide new therapeutic insights.
METHODS:
Male specific-pathogen-free C57BL/6J mice (6-8 weeks, 18-20 g) received intraperitoneal lipopolysaccharide (LPS) to establish a classical S-ALI model. Western blotting was used to assess PANoptosome-related proteins and enzymes involved in the itaconic acid metabolic pathway, while real-time reverse transcription polymerase chain reaction and metabolomics quantified itaconic acid levels. Primary peritoneal macrophages (PMs) were pretreated with the itaconate derivative 4-octyl itaconate (4-OI) and then exposed to tumor necrosis factor alpha (TNF-α) plus interferon gamma (IFN-γ) to induce PANoptosis. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Western blotting was employed to quantify enzymes of the itaconate-metabolic pathway in PANoptotic macrophages, to evaluate the impact of 4-OI on PANoptosome-associated proteins, and to determine NINJ1 abundance in lung tissues from S-ALI mice and in PANoptotic macrophages. Fluorescent dye FM4-64 was used to visualize 4-OI-mediated changes in PMR, whereas immunofluorescence staining mapped the effect of 4-OI on both the expression level and membrane localization of NINJ1 in PANoptotic macrophages. The effect of 4-OI on lactate dehydrogenase (LDH) release in culture supernatants and peripheal blood serum was assessed using a LDH assay kit, and non-denataring polyacylamide gel electrophoresis was used to assess the expression of NINJ1 in S-ALI mouse lung tissues and the impact of 4-OI on the expression of PANoptosis-associated NINJ1 multimeric reflected protein in macropahges.
RESULTS:
In S-ALI mouse lungs, PANoptosome components [NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Caspase-1, Z-DNA binding protein (ZBP1), and Caspase-3] and phosphorylated mixed lineage kinase domain-like protein (MLKL) S345 were significantly upregulated (all P<0.05), while metabolomics showed compensatory increases in itaconic acid and its key enzymes [aconitate decarboxylase 1 (ACOD1)/immunoresponsive gene 1 (IRG1)]. In macrophages, 4-OI obviously suppressed PANoptosome protein expression, reduced LDH release, restored plasma membrane integrity, and inhibited NINJ1 expression and oligomerization at the membrane (P<0.05).
CONCLUSIONS
Itaconic acid may alleviate macrophage PANoptosis in S-ALI by inhibiting NINJ1-mediated plasma membrane rupture. Targeting NINJ1 or enhancing itaconate pathways may offer a novel therapeutic strategy for S-ALI.
Animals
;
Acute Lung Injury/pathology*
;
Succinates/pharmacology*
;
Sepsis/complications*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Macrophages/pathology*
;
Cell Membrane/metabolism*
;
Lipopolysaccharides
;
Hydro-Lyases
4.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
5.Advancements in the regulatory effects and mechanisms of the immune metabolite itaconate in diseases.
Zhongkun CHENG ; Jingxian ZHAO ; Yanyan LIU ; Ling XU ; Guangwei ZHAO ; Xingwei NI ; Xiaowei YANG
Chinese Journal of Biotechnology 2024;40(11):3888-3901
Itaconate is a pivotal intermediate metabolite in the tricarboxylic acid (TCA) cycle of immune cells. It is produced by decarboxylation of cis-aconitic acid under the catalysis of aconitate decarboxylase 1 (ACOD1), which is encoded by the immune response gene 1 (IRG1). Itaconate has become a focal point of research on immunometabolism. Studies have demonstrated that itaconate plays a crucial role in diseases by regulating inflammation, remodeling cell metabolism, and participating in epigenetic regulation. This paper reviewed the research progress in itaconnate from its chemical structure, regulatory effects on different diseases, and mechanisms, proposes the future research directions, aiming to provide a theoretical basis for the development of itaconate-related drugs.
Humans
;
Succinates/metabolism*
;
Carboxy-Lyases/genetics*
;
Inflammation/metabolism*
;
Citric Acid Cycle
;
Animals
;
Epigenesis, Genetic
;
Neoplasms/immunology*
6.Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system.
Liangjing XIN ; Fuyuan ZHOU ; Chuangwei ZHANG ; Wenjie ZHONG ; Shihan XU ; Xuan JING ; Dong WANG ; Si WANG ; Tao CHEN ; Jinlin SONG
International Journal of Oral Science 2022;14(1):27-27
Periodontitis is a widespread oral disease characterized by continuous inflammation of the periodontal tissue and an irreversible alveolar bone loss, which eventually leads to tooth loss. Four-octyl itaconate (4-OI) is a cell-permeable itaconate derivative and has been recognized as a promising therapeutic target for the treatment of inflammatory diseases. Here, we explored, for the first time, the protective effect of 4-OI on inhibiting periodontal destruction, ameliorating local inflammation, and the underlying mechanism in periodontitis. Here we showed that 4-OI treatment ameliorates inflammation induced by lipopolysaccharide in the periodontal microenvironment. 4-OI can also significantly alleviate inflammation and alveolar bone loss via Nrf2 activation as observed on samples from experimental periodontitis in the C57BL/6 mice. This was further confirmed as silencing Nrf2 blocked the antioxidant effect of 4-OI by downregulating the expression of downstream antioxidant enzymes. Additionally, molecular docking simulation indicated the possible mechanism under Nrf2 activation. Also, in Nrf2-/- mice, 4-OI treatment did not protect against alveolar bone dysfunction due to induced periodontitis, which underlined the importance of the Nrf2 in 4-OI mediated periodontitis treatment. Our results indicated that 4-OI attenuates inflammation and oxidative stress via disassociation of KEAP1-Nrf2 and activation of Nrf2 signaling cascade. Taken together, local administration of 4-OI offers clinical potential to inhibit periodontal destruction, ameliorate local inflammation for more predictable periodontitis.
Alveolar Bone Loss/prevention & control*
;
Animals
;
Antioxidants/pharmacology*
;
Inflammation
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Molecular Docking Simulation
;
NF-E2-Related Factor 2/metabolism*
;
Periodontitis/prevention & control*
;
Succinates
7.Combination of Se-methylselenocysteine, D-α-tocopheryl succinate, β-carotene, and L-lysine can prevent cancer metastases using as an adjuvant therapy.
Yunlong CHENG ; Shu LIAN ; Shuhui LI ; Yusheng LU ; Jie WANG ; Xiaoxiao DENG ; Shengyi ZHAI ; Lee JIA
Journal of Zhejiang University. Science. B 2022;23(11):943-956
OBJECTIVES:
Primary tumor treatment through surgical resection and adjuvant therapy has been extensively studied, but there is a lack of effective strategies and drugs for the treatment of tumor metastases. Here, we describe a functional product based on a combination of compounds, which can be used as an adjuvant therapy and has well-known mechanisms for inhibiting cancer metastases, improving anti-cancer treatment, and enhancing immunity and antioxidant capacity. Our designed combination, named MVBL, consists of four inexpensive compounds: L-selenium-methylselenocysteine (MSC), D-α-tocopheryl succinic acid (VES), β-carotene (β-Ca), and L-lysine (Lys).
METHODS:
The effects of MVBL on cell viability, cell cycle, cell apoptosis, cell migration, cell invasion, reactive oxygen species (ROS), and paclitaxel (PTX)-combined treatment were studied in vitro. The inhibition of tumor metastasis, antioxidation, and immune enhancement capacity of MVBL were determined in vivo.
RESULTS:
MVBL exhibited higher toxicity to tumor cells than to normal cells. It did not significantly affect the cell cycle of cancer cells, but increased their apoptosis. Wound healing, adhesion, and transwell assays showed that MVBL significantly inhibited tumor cell migration, adhesion, and invasion. MVBL sensitized MDA-MB-231 breast cancer cells to PTX, indicating that it can be used as an adjuvant to enhance the therapeutic effect of chemotherapy drugs. In mice, experimental data showed that MVBL inhibited tumor metastasis, prolonged their survival time, and enhanced their antioxidant capacity and immune function.
CONCLUSIONS
This study revealed the roles of MVBL in improving immunity and antioxidation, preventing tumor growth, and inhibiting metastasis in vitro and in vivo. MVBL may be used as an adjuvant drug in cancer therapy for improving the survival and quality of life of cancer patients.
Mice
;
Animals
;
beta Carotene
;
Lysine/pharmacology*
;
Antioxidants/pharmacology*
;
Quality of Life
;
Paclitaxel/pharmacology*
;
Apoptosis
;
alpha-Tocopherol
;
Succinates/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Neoplasms
8.Intestinal Dopamine Receptor D2 is Required for Neuroprotection Against 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Dopaminergic Neurodegeneration.
Hairong PENG ; Shui YU ; Yukai ZHANG ; Yanqing YIN ; Jiawei ZHOU
Neuroscience Bulletin 2022;38(8):871-886
A wealth of evidence has suggested that gastrointestinal dysfunction is associated with the onset and progression of Parkinson's disease (PD). However, the mechanisms underlying these links remain to be defined. Here, we investigated the impact of deregulation of intestinal dopamine D2 receptor (DRD2) signaling in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration. Dopamine/dopamine signaling in the mouse colon decreased with ageing. Selective ablation of Drd2, but not Drd4, in the intestinal epithelium, caused a more severe loss of dopaminergic neurons in the substantia nigra following MPTP challenge, and this was accompanied by a reduced abundance of succinate-producing Alleoprevotella in the gut microbiota. Administration of succinate markedly attenuated dopaminergic neuronal loss in MPTP-treated mice by elevating the mitochondrial membrane potential. This study suggests that intestinal epithelial DRD2 activity and succinate from the gut microbiome contribute to the maintenance of nigral DA neuron survival. These findings provide a potential strategy targeting neuroinflammation-related neurological disorders such as PD.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects*
;
Animals
;
Disease Models, Animal
;
Dopamine
;
Dopaminergic Neurons/metabolism*
;
Gastrointestinal Microbiome
;
Mice
;
Mice, Inbred C57BL
;
Neuroprotection
;
Parkinson Disease
;
Pyrrolidines
;
Receptors, Dopamine D2/metabolism*
;
Substantia Nigra
;
Succinates
9.Cutaneous cytomegalovirus infection presenting as persistent plaque on the nose in an HIV-AIDS patient.
Waskito Mohammad Yoga A. ; Escueta Luella Joy A. ; Dayrit Johannes F
Journal of the Philippine Dermatological Society 2016;25(1):35-37
Cytomegalovirus (CMV) rarely manifests as cutaneous lesions in immunocompromised patients. Only 25 cases have been reported since 1991. It causes latent infection among exposed individuals but reactivation may occur in immunocompromised patients causing encephalitis, pneumonitis, colitis, retinitis and congenital fetal infection. Cutaneous manifestations of CMV infection usually present with various skin lesions such as ulcers, erosions, erythematous morbilliform rash, vesicles and bullae. We report a case of cutaneous CMV infection in an HIV-AIDS patient presenting as a persistent ulcerated plaque on the nose. The lesion slowly evolved into a plaque which partially destroyed the right alar rim. Skin punch biopsy showed perivascular giant cells with large eosinophilic inclusions resembling an owl's eye consistent with CMV infection. He was subsequently diagnosed with CMV retinitis because of blurring of vision and findings of retinal necrosis on fundoscopy. Oral valganciclovir 1800mg/day was given for 21 days. Significant thinning and drying of the plaque with no further progression of ulceration of the alar rim were noted.
Human ; Male ; Adult ; Acquired Immunodeficiency Syndrome ; Blister ; Colitis ; Cytomegalovirus ; Cytomegalovirus Retinitis ; Encephalitis ; Exanthema ; Ganciclovir ; Immunocompromised Host ; Pneumonia ; Strigiformes ; Succinates ; Ulcer
10.Prospective Randomized Study of Sarpogrelate Versus Clopidogrel-based Dual Antiplatelet Therapies in Patients Undergoing Femoropopliteal Arterial Endovascular Interventions: Preliminary Results.
Yue-Xin CHEN ; Wen-Da WANG ; Xiao-Jun SONG ; Yong-Quan GU ; Hong-Yan TIAN ; He-Jie HU ; Ji-Chun ZHAO ; Xiao-Qiang LI ; Chang-Wei LIU
Chinese Medical Journal 2015;128(12):1563-1566
BACKGROUNDSarpogrelate is a selective 5-hydroxytryptamine (5-HT) receptor subtype 2A antagonist which blocks 5-HT induced platelet aggregation and proliferation of vascular smooth muscle cells. We compared the efficacy of sarpogrelate-based dual antiplatelet therapies for the prevention of restenosis and target lesion revascularization (TLR) rates comparing with that of clopidogrel after percutaneous endovascular interventions (EVIs) of femoropopliteal (FP) arterial lesions.
METHODSThis prospective, multicenter, randomized clinical trial recruited a total of 120 patients with successful EVI of FP lesions at seven centers across China between January 2011 and June 2012. Patients were randomized to receive either sarpogrelate (100 mg trice daily for 6 months, n = 63) or clopidogrel (75 mg once daily for 6 months, n = 57). All patients also received oral aspirin (100 mg once daily for 12 months). Clinical follow-up was conducted up to 12 months postprocedure.
RESULTSThere was no significant difference between the two groups in basic demographic data. The restenosis rate was higher in the clopidogrel group (22.80%) than in sarpogrelate group (17.50%), but there was no significant difference between these two groups (P = 0.465). The TLR rate, ipsilateral amputation rate, mortality in all-cause and bleeding rate were also similar in the two groups (P > 0.05).
CONCLUSIONSAspirin plus sarpogrelate is a comparable antithrombotic regimen to aspirin plus clopidogrel after EVI of FP arterial lesions. Dual antiplatelet therapies might play an important role in preventing restenosis after successful EVI of FP lesions.
Aged ; Arterial Occlusive Diseases ; drug therapy ; Female ; Fibrinolytic Agents ; therapeutic use ; Humans ; Kaplan-Meier Estimate ; Male ; Middle Aged ; Peripheral Vascular Diseases ; drug therapy ; Popliteal Artery ; drug effects ; pathology ; Serotonin Antagonists ; therapeutic use ; Succinates ; therapeutic use ; Ticlopidine ; analogs & derivatives ; therapeutic use

Result Analysis
Print
Save
E-mail