1.Regulation of JAK2/STAT3 signaling pathway by polydatin in the treatment of hormone-induced femoral head necrosis in rats.
Xiang-Jun YANG ; Cong-Yue WANG ; Xi-Lin XU ; Hai HU ; Yi-Wei SHEN ; Xiao-Feng ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(2):195-203
OBJECTIVE:
To explore the therapeutic effect of polygonum cuspidatum glycoside on steroid-induced osteonecrosis of the femoral head(SONFH) in rats and its potential mechanism of protecting bone tissue by regulating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway(JAK2/STAT3).
METHODS:
Fifty male SD rats were randomly divided into control group, model group, low-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-L), high-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-H), and polygonum cuspidatum glycoside-H+Colivelin (JAK2/STAT3 pathway activator) group. SONFH model was induced by lipopolysaccharide and dexamethasone. The treatment groups were given polygonum cuspidatum glycoside orally(polygonum cuspidatum glycoside-L 10 mg·kg-1, polygonum cuspidatum glycoside-H 20 mg·kg-1, and the polygonum cuspidatum glycoside-H+Colivelin group was injected with Colivelin (1 mg·kg-1) intraperitoneally once a day, while the control and model groups were given an equal volume of saline for 6 weeks. The observed indicators included serum calcium(Ca), serum phosphorus (P), alkaline phosphatase, and transforming growth factor β1(TGF-β1) levels, micro-CT scanning, hematoxylin-eosin staining, and Western blot detection of JAK2/STAT3 signaling pathway and osteogenic differentiation marker genes, including Runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP2), and osteopontin (OPN) protein expression.
RESULTS:
Compared with the model group, the trabecular bone area percentage in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups was significantly increased, and the empty lacunar rate was significantly decreased (P<0.05). Micro-CT analysis showed that the bone volume fraction, trabecular number, and thickness increased, and the trabecular separation decreased in the polygonum cuspidatum glycoside-treated groups(P<0.05). Serum biochemical tests found that the serum Ca and P concentrations in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups were restored, the alkaline phosphatase levels decreased, and the transforming growth factor β1 levels increased (P<0.05). Western blot analysis showed that polygonum cuspidatum glycoside significantly inhibited the activation of the JAK2/STAT3 signaling pathway in the model group and promoted the expression of osteogenic differentiation marker genes such as Runx2, BMP2, and OPN (P<0.05). Compared with the polygonum cuspidatum glycoside-H group, the improvements in the polygonum cuspidatum glycoside-H+Colivelin group were somewhat weakened, indicating the importance of the JAK2/STAT3 signaling pathway in the action of polygonum cuspidatum glycoside.
CONCLUSION
polygonum cuspidatum glycoside promotes osteogenic differentiation, improves bone microstructure, and has significant therapeutic effects on rat SONFH by regulating the JAK2/STAT3 signaling pathway.
Animals
;
Male
;
Janus Kinase 2/physiology*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Glucosides/pharmacology*
;
STAT3 Transcription Factor/genetics*
;
Femur Head Necrosis/chemically induced*
;
Stilbenes/pharmacology*
2.Resveratrol Attenuates Inflammation in Acute Lung Injury through ROS-Triggered TXNIP/NLRP3 Pathway.
Wen-Han HUANG ; Kai-Ying FAN ; Yi-Ting SHENG ; Wan-Ru CAI
Chinese journal of integrative medicine 2025;31(12):1078-1086
OBJECTIVE:
To evaluate the protective effects of resveratrol against acute lung injury (ALI) and investigate the potential mechanisms underlying the reactive oxygen species (ROS)-triggered thioredoxin-interacting protein (TXNIP)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway.
METHODS:
C57BL/6 mice and J774A.1 cells were selected as the research subjects. Thirty Mice were randomly divided into 5 groups of 6 in each group: control with 0.9% saline, 5 mg/kg lipopolysaccharide (LPS) 24 h, 25 mg/kg resveratrol + 5 mg/kg LPS, 100 mg/kg resveratrol + 5 mg/kg LPS, and 4 mg/kg NLRP3 inhibitor CY-09 + 5 mg/kg LPS. For cell stimulation, cells were pretreated with 5 and 20 µmol/L resveratrol for 2 h, and stimulated with or without 1 µg/mL LPS and 3 mmol/L ATP for 2 h. The antioxidant N-acetyl-L-cysteine (NAC, 2 µmol/L) was used as the positive control group. Hematoxylin and eosin staining was used to evaluate the degree of lung LPS-induced tissue damage, and enzyme-linked immunosorbent assay was used to evaluate the contents of interleukin-1 β (IL-1 β) and IL-18 in the serum and cell supernatant. ROS and malondialdehyde (MDA) levels in the lung tissue were detected using the corresponding kits. Western blotting was used to detect the expressions of TXNIP, high-mobility group box 1 (HMGB1), NLRP3, as well as cysteine-aspartic acid protease 1 (caspase-1) and gasdermin D (GSDMD) along with their cleaved forms in lung tissue. Additionally, reverse transcription quantitative polymerase chain reaction was performed to analyze the expression of related inflammatory cytokines. ROS content was detected using flow cytometry and confocal laser microscopy. Mitochondrial morphological changes were observed using transmission electron microscopy, and HMGB1 expression was detected using immunofluorescence.
RESULTS:
Resveratrol significantly alleviated LPS-induced lung damage with reduced inflammation, interstitial edema, and leukocyte infiltration (P<0.01). It also decreased serum levels of IL-1 β and IL-18 (P<0.05), while downregulating the expressions of NLRP3, IL-6, and other inflammatory markers at both the protein and mRNA levels (P<0.05). Notably, the higher dose (100 mg/kg) demonstrated a better effect than the lower dose (25 mg/kg). In macrophages, resveratrol reduced IL-1 β and IL-18 following LPS and ATP stimulation, suppressed HMGB1 translocation, and inhibited formation and activation of the NLRP3 inflammasome (P<0.05 or P<0.01). These anti-inflammatory effects were mediated through the suppression ROS accumulation (P<0.01) and mitochondrial dysfunction. Transmission electron microscopy revealed that resveratrol preserved mitochondrial structure, preventing the mitochondrial damage seen in LPS-treated groups (P<0.01). The expressions of cleaved caspase-1, cleaved GSDMD, and cytoplasmic HMGB1 were all reduced following resveratrol treatment (P<0.01). Moreover, resveratrol inhibited dissociation of TXNIP from thioredoxin, blocking subsequent activation of NLRP3 and downstream inflammatory cytokines (P<0.01). Similarly, the higher concentration of resveratrol (20 µ mol/L) exhibited superior efficacy in vitro.
CONCLUSION
Resveratrol can reduce the inflammatory response following ALI and inhibit the activation of NLRP3 inflammasome and the level of HMGB1 in the cytoplasm by inhibiting ROS overproduction.
Acute Lung Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Resveratrol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Inflammation/complications*
;
Mice, Inbred C57BL
;
Carrier Proteins/metabolism*
;
Signal Transduction/drug effects*
;
Lipopolysaccharides
;
Thioredoxins/metabolism*
;
Mice
;
Lung/drug effects*
;
Male
;
Cell Line
;
Interleukin-1beta/metabolism*
;
Cell Cycle Proteins
;
Stilbenes/therapeutic use*
3.Study on the protective effects of resveratrol on the liver of hindlimb-unloaded rats.
Yingying XUAN ; Yutian YANG ; Hanqin TANG ; Zhihui MA ; Liang LI ; Dongshuai SHEN ; Mei ZHANG ; Keming CHEN
Journal of Biomedical Engineering 2024;41(6):1250-1256
This study aims to investigate the protective effect of resveratrol against liver injury in hindlimb unloading rats. Thirty 2-month-old male SD rats were randomly divided into normal group (Control), hindlimb unloading model group (Model), and hindlimb unloading+resveratrol administration group (Model+Res). The Model + Res group was injected intraperitoneally with 30 mg/kg of resveratrol, and the Control and Model groups were injected intraperitoneally with an equal volume of 0.9% NaCl. Liver tissues were collected after 28 days and analyzed for oxidative stress, inflammatory factors, energy metabolism indices, Na +-K +-ATPase and Ca 2+-Mg 2+-ATPase activity, and morphological changes were observed by hematoxylin-eosin staining. The protein expression levels of Bax, Bcl-2, p-PI3K, PI3K, p-AKT, and AKT were detected by Western blotting. Compared with the Control group, hepatocytes in the Model group showed swelling, abnormal morphology, nuclear consolidation, and cell membrane disruption. Oxidative stress, inflammatory factor levels, hepatic glycogen accumulation, and energy metabolism were increased in the liver tissues of the Model group, while resveratrol treatment significantly reversed these changes. The results of Western blotting showed that resveratrol significantly reduced the expression of Bax and increased the expression levels of Bcl-2, and the proteins of p-PI3K/PI3K and p-AKT/AKT expression levels. It is suggested that 28 days of hindlimb unloading treatment could lead to liver tissue injury in rats, which is manifested as oxidative stress, inflammatory response, energy metabolism disorder and increased apoptosis level, and resveratrol has a certain mitigating effect on this.
Animals
;
Resveratrol
;
Male
;
Liver/pathology*
;
Rats, Sprague-Dawley
;
Rats
;
Hindlimb Suspension
;
Oxidative Stress/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Stilbenes/pharmacology*
;
bcl-2-Associated X Protein/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis/drug effects*
4.Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1.
Na QIN ; Lin HUANG ; Rui DONG ; Fen LI ; Xu Heng TANG ; Zhen Hua ZENG ; Xing Min WANG ; Hong YANG
Journal of Southern Medical University 2022;42(1):93-100
OBJECTIVE:
To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.
METHODS:
SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.
RESULTS:
The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).
CONCLUSION
PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Animals
;
Brain Injuries, Traumatic
;
Glucosides/pharmacology*
;
HMGB1 Protein/metabolism*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
;
Stilbenes/pharmacology*
;
Superoxide Dismutase/metabolism*
5.Effect of polydatin on the proliferation and apoptosis of THP-1 cells and the mechanism.
Chun-Mei WANG ; Wen-Jing QI ; Yan-Jiao REN ; Guang-Yao SHENG
Chinese Journal of Contemporary Pediatrics 2022;24(7):821-825
OBJECTIVES:
To explore the effect of polydatin on the proliferation and apoptosis of acute monocytic leukemia cell line THP-1 and the possible mechanism.
METHODS:
After THP-1 cells were treated with polydatin at gradient concentrations for 24 hours and 48 hours, their proliferation was determined by CCK-8 assay, and half maximal inhibitory concentration (IC50) was calculated. Logarithmically growing THP-1 cells were divided into two groups, a polydatin treatment group (treated with IC50 of polydatin) and a blank control group (treated without polydatin solution), and incubated for 48 hours. Cell apoptosis and cell cycle were measured by flow cytometry. The expression levels of PI3K, AKT, p-AKT, mTOR, p-mTOR, p70 S6K, and p-p70 S6K proteins were measured by Western blotting.
RESULTS:
After treatment with polydatin, the proliferation of THP-1 cells was strongly inhibited, and the IC50 at 48 hours was 1 800 μmol/L. After treatment with 1 800 μmol/L polydatin solution for 48 hours, the apoptosis rate of THP-1 cells increased significantly compared with the blank control group (P<0.05). The cell cycle was arrested in the G0/G1 and S phases, with a significantly increased proportion of cells in the G0/G1 phase and a significantly decreased proportion of cells in the S phase, as compared with the blank control group (P<0.05). The expression levels of PI3K, AKT, p-AKT, mTOR, p-mTOR, p70 S6K, and p-p70 S6K proteins decreased significantly compared with the blank control group (P<0.05).
CONCLUSIONS
Polydatin can effectively inhibit the proliferation, block the cell cycle, and induce the apoptosis of THP-1 cells, which may be related to inhibition of the PI3K/AKT/mTOR signaling pathway.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Glucosides/pharmacology*
;
Humans
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Signal Transduction
;
Stilbenes/pharmacology*
;
THP-1 Cells
;
TOR Serine-Threonine Kinases
6.Effect of piceatannol against malignant melanoma
Bo YU ; Wei LIU ; Min-Qi HU ; Xiu-Fa TANG ; Chun-Jie LI ; Lin QUE
West China Journal of Stomatology 2021;39(4):413-418
OBJECTIVES:
To study the antitumor effect of piceatannol (PIC) on malignant melanoma
METHODS:
B16F10 cells were cultured
RESULTS:
The cell viability of B16F10 decreased with increasing PIC concentration. The results of the Transwell assay showed that invasion ability decreased with increasing PIC concentration, and healing time was prolonged at increased PIC concentration in the wound healing assay. Western blot results showed that PIC mainly inhibited the phosphorylation of Syk and inhibited the expression of MMP-2, MMP-9, and VEGF. RNA interference pointed out that blocking the expression of Syk can reveal the same inhibition effect on B16F10 cells as PIC.
CONCLUSIONS
PIC might block the progression of malignant melanoma by inhibiting spleen tyrosine kinase.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
Melanoma/drug therapy*
;
Mice
;
Neoplasm Invasiveness
;
Stilbenes/pharmacology*
;
Syk Kinase
;
Vascular Endothelial Growth Factor A
7.Heterologous expression of a novel β-glucosidase BglD2 and its application in polydatin-hydrolyzing.
Cheng HE ; Yan WU ; Chunyu MENG ; Yazhong XIAO ; Zemin FANG ; Wei FANG
Chinese Journal of Biotechnology 2021;37(2):580-592
A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.
Enzyme Stability
;
Glucose
;
Glucosides/pharmacology*
;
Hydrogen-Ion Concentration
;
Stilbenes/pharmacology*
;
Substrate Specificity
;
Temperature
;
Xylose
;
beta-Glucosidase/genetics*
8.Pterostilbene Ameliorates Renal Damage in Diabetic Rats by Suppressing Hyperglycemia with Inhibition of Inflammatory and Fibrotic Responses.
Run Rong DING ; Guo Yu HUANG ; Yu Jing ZHANG ; Hua Lei SUN ; Yi Ming LIU ; Ze XU ; Wen Jie LI ; Xing LI
Biomedical and Environmental Sciences 2021;34(12):1015-1019
9.Pterostilbene Ameliorates Glycemic Control, Dyslipidemia and Liver Injury in Type 2 Diabetes Rats.
Yu Jing ZHANG ; Hua Lei SUN ; Teng WANG ; Xin Xin LIU ; Chang LIU ; Fang SHEN ; Bing Ya WANG ; Run Rong DING ; Yi Ming LIU ; Guo Yu HUANG ; Wen Jie LI ; Xing LI
Biomedical and Environmental Sciences 2020;33(5):365-368
Animals
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Diabetes Mellitus, Type 2
;
drug therapy
;
Dyslipidemias
;
drug therapy
;
Glycemic Load
;
drug effects
;
Male
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Specific Pathogen-Free Organisms
;
Stilbenes
;
pharmacology
10.Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Hong-Zhuo SHI ; Wen-Qiang CHANG ; Ming ZHANG ; Hong-Xiang LOU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):209-217
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
ATP-Binding Cassette Transporters
;
genetics
;
metabolism
;
Antifungal Agents
;
chemistry
;
metabolism
;
pharmacology
;
Azoles
;
pharmacology
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Candida albicans
;
chemistry
;
drug effects
;
metabolism
;
Cell Membrane
;
chemistry
;
metabolism
;
Coculture Techniques
;
Drug Resistance, Fungal
;
drug effects
;
Ergosterol
;
metabolism
;
Fungal Proteins
;
genetics
;
metabolism
;
Lipids
;
chemistry
;
Molecular Structure
;
Permeability
;
Phenyl Ethers
;
chemistry
;
metabolism
;
pharmacology
;
Sterols
;
chemistry
;
metabolism
;
Stilbenes
;
chemistry
;
metabolism
;
pharmacology
;
Triterpenes
;
chemistry
;
metabolism
;
pharmacology

Result Analysis
Print
Save
E-mail