1.Short-term effectiveness of floating island laminectomy surgery for thoracic spinal stenosis and myelopathy caused by ossification of ligamentum flavum.
Cheng ZHONG ; Peng XIU ; Hua CHEN ; Tao LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):466-469
OBJECTIVE:
To explore short-term effectiveness of floating island laminectomy surgery in treating thoracic spinal stenosis and myelopathy caused by ossification of the ligamentum flavum.
METHODS:
A total of 31 patients with thoracic spinal stenosis and myelopathy caused by ossification of the ligamentum flavum between January 2019 and April 2022 were managed with floating island laminectomy surgery. The patients comprised 17 males and 14 females, aged between 36 and 78 years, with an average of 55.9 years. The duration of symptoms of spinal cord compression ranged from 3 to 62 months (mean, 27.2 months). The lesions affected T 1-6 in 4 cases and T 7-12 in 27 cases. The preoperative neurological function score from the modified Japanese Orthopaedic Association (mJOA) was 4.7±0.6. Surgical duration, intraoperative blood loss, and complications were recorded. The thoracic MRI was conducted to reassess the degree of spinal cord compression and decompression after operation. The mJOA score was employed to evaluate the neurological function and calculate the recovery rate at 12 months after operation.
RESULTS:
The surgical duration ranged from 122 to 325 minutes, with an average of 204.5 minutes. The intraoperative blood loss ranged from 150 to 800 mL (mean, 404.8 mL). All incisions healed by first intention after operation. All patients were followed up 12-14 months, with an average of 12.5 months. The patients' symptoms, including lower limb weakness, gait disorders, and pain, significantly improved. The mJOA scores after operation significantly increased when compared with preoperative scores ( P<0.05), gradually improving with time, with significant differences observed among 1, 3, and 6 months ( P<0.05). The recovery rate at 12 months was 69.76%±11.38%, with 10 cases exhibiting excellent neurological function and 21 cases showing good. During the procedure, there were 3 cases of dural tear and 1 case of dural defect. Postoperatively, there were 2 cases of cerebrospinal fluid leakage. No aggravated nerve damage, recurrence of ligamentum flavum ossification, or postoperative thoracic deformity occurred.
CONCLUSION
The floating island laminectomy surgery is safe for treating thoracic spinal stenosis and myelopathy caused by ossification of the ligamentum flavum, effectively preventing the exacerbation of neurological symptoms. Early improvement and recovery of neurological function are achieved.
Humans
;
Male
;
Spinal Stenosis/diagnostic imaging*
;
Female
;
Laminectomy/methods*
;
Ligamentum Flavum/pathology*
;
Middle Aged
;
Aged
;
Thoracic Vertebrae/surgery*
;
Adult
;
Decompression, Surgical/methods*
;
Treatment Outcome
;
Ossification, Heterotopic/surgery*
;
Spinal Cord Compression/etiology*
;
Spinal Cord Diseases/etiology*
;
Magnetic Resonance Imaging
2.Research progress of unilateral biportal endoscopy technology in cervical degenerative disease.
Runmin TANG ; Lixian TAN ; Guoqiang LAI ; Limin RONG ; Liangming ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):495-503
OBJECTIVE:
To review the application and progress of unilateral biportal endoscopy (UBE) technology in the treatment of cervical degenerative diseases, and to provide reference for clinical treatment decisions.
METHODS:
The literature related to UBE technology in the treatment of cervical spondylotic radiculopathy (CSR) and cervical spondylotic myelopathy (CSM) at home and abroad was extensively reviewed, and the surgical methods, indications, effectiveness, and safety were analyzed and summarized.
RESULTS:
UBE technology is effective in the treatment of CSR and CSM, and has the advantages of good surgical field, reducing the injury of the posterior structure of the cervical spine, and protecting the facet joint process, but in general, the indications are relatively narrow, limited to single-segment or adjacent double-segment lesions, and the requirements for the operator are relatively high, and the learning curve is long.
CONCLUSION
UBE technology can be applied to the treatment of CSR and CSM, but it needs to be carried out by experienced UBE surgeons for specific cases.
Humans
;
Cervical Vertebrae/surgery*
;
Endoscopy/methods*
;
Radiculopathy/surgery*
;
Spondylosis/surgery*
;
Decompression, Surgical/methods*
;
Spinal Cord Diseases/surgery*
;
Treatment Outcome
3.Effects of Yishen Yangsui formula() on pyroptosis in the spinal cord tissue in rats with degenerative cervical myelopathy.
Guo-Liang MA ; He YIN ; Bo XU ; Min-Shan FENG ; Dan ZHANG ; Dian ZHANG ; Xiao-Kuan QIN ; Li-Guo ZHU ; Bo-Wen YANG ; Xin CHEN
China Journal of Orthopaedics and Traumatology 2025;38(5):532-539
OBJECTIVE:
To preliminarily investigate the effects and mechanism of action of Yishen Yangsui Formula (, YSYSF)on the recovery of neurological function in rats with degenerative cervical myelopathy.
METHODS:
Fifty adult SD female rats were randomly divided into control group, sham group, model group, YSYSF group and positive drug group by using randomized numerical table method. In the model group, YSYSF group and positive drug group, polyvinyl alcohol acrylamide interpenetrating network hydrogel(water-absorbent swelling material) was used to construct a rat spinal cord chronic compression model. The sham group was implanted with the water-absorbent swelling material and then removed without causing spinal cord compression. The control group, the sham group and the model group were given equal amounts of saline by gavage, the group of YSYSF was given Chinese herbal medicine soup by gavage 9.1 g·kg-1 once a day, and the positive drug group was given tetrahexylsalicylglucoside sodium monosialate ganglioside by intraperitoneal injection 4.2 mg·kg-1 once a day. The motor function of the rats was assessed by the BBB method after 1, 3, 7, and 14 d of drug administration. The spinal cord tissues were taken from rats executed 14 d after drug administration, and the morphological changes of the spinal cord compression site were observed by HE staining, and the expression levels of Caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 were detected in the area of spinal cord injury by Western blot method.
RESULTS:
The BBB scores of the control group and the sham group were normal at all time points after modeling, which were higher than the BBB scores of the model group, the YSYSF, and the positive drug group (P<0.05). From the 3rd day after gavage, at all time points, the BBB scores of rats in the YSYSF group and the positive drug group were higher than those of rats in the model group (P<0.05). The staining pattern of HE spinal cord tissue was normal in the control group and the sham group, and the HE spinal cord in the model group was severely damaged with a large number of neuron deaths, whereas the damage to the spinal cord and neuron cells was reduced in the YSYSF group and the positive drug group. The expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β and IL-18 in the spinal cord of the model group were significantly higher than those of the sham group (P<0.0001), and the expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 in the YSYSF group and the drug group were significantly lower than those in the model group (P<0.05).
CONCLUSION
YSYSF can improve the motor function of rats with degenerative cervical spinal cord disease, alleviate the pathological changes, and promote the recovery of spinal cord neurological function. The specific mechanism may be related to the inhibition of the activation of inflammatory vesicles NLRP3 and PYCARD, the reduction of the release of inflammatory factors IL-1β and IL-18, the reduction of the expression of caspase-1 and GSDMD, the reduction of cellular death, and the inhibition of inflammatory response.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Spinal Cord/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Spinal Cord Diseases/drug therapy*
;
Interleukin-1beta/metabolism*
4.Bone loss in patients with spinal cord injury: Incidence and influencing factors.
Min JIANG ; Jun-Wei ZHANG ; He-Hu TANG ; Yu-Fei MENG ; Zhen-Rong ZHANG ; Fang-Yong WANG ; Jin-Zhu BAI ; Shu-Jia LIU ; Zhen LYU ; Shi-Zheng CHEN ; Jie-Sheng LIU ; Jia-Xin FU
Chinese Journal of Traumatology 2025;28(6):477-484
PURPOSE:
To investigate the incidence and influencing factors of bone loss in patients with spinal cord injury (SCI).
METHODS:
A retrospective case-control study was conducted. Patients with SCI in our hospital from January 2019 to March 2023 were collected. According to the correlation between bone mineral density (BMD) at different sites, the patients were divided into the lumbar spine group and the hip joint group. According to the BMD value, the patients were divided into the normal bone mass group (t > -1.0 standard deviation) and the osteopenia group (t ≤ -1.0 standard deviation). The influencing factors accumulated as follows: gender, age, height, weight, cause of injury, injury segment, injury degree, time after injury, start time of rehabilitation, motor score, sensory score, spasticity, serum value of alkaline phosphatase, calcium, and phosphorus. The trend chart was drawn and the influencing factors were analyzed. SPSS 26.0 was used for statistical analysis. Correlation analysis was used to test the correlation between the BMD values of the lumbar spine and bilateral hips. Binary logistic regression analysis was used to explore the influencing factors of osteoporosis after SCI. p < 0.05 was considered statistically significant.
RESULTS:
The incidence of bone loss in patients with SCI was 66.3%. There was a low concordance between bone loss in the lumbar spine and the hip, and the hip was particularly susceptible to bone loss after SCI, with an upward trend in incidence (36% - 82%). In this study, patients with SCI were divided into the lumbar spine group (n = 100) and the hip group (n = 185) according to the BMD values of different sites. Then, the lumbar spine group was divided into the normal bone mass group (n = 53) and the osteopenia group (n = 47); the hip joint group was divided into the normal bone mass group (n = 83) and the osteopenia group (n = 102). Of these, lumbar bone loss after SCI is correlated with gender and weight (p = 0.032 and < 0.001, respectively), and hip bone loss is correlated with gender, height, weight, and time since injury (p < 0.001, p = 0.015, 0.009, and 0.012, respectively).
CONCLUSIONS
The incidence of bone loss after SCI was high, especially in the hip. The incidence and influencing factors of bone loss in the lumbar spine and hip were different. Patients with SCI who are male, low height, lightweight, and long time after injury were more likely to have bone loss.
Humans
;
Spinal Cord Injuries/complications*
;
Male
;
Female
;
Retrospective Studies
;
Incidence
;
Adult
;
Bone Density
;
Middle Aged
;
Case-Control Studies
;
Osteoporosis/etiology*
;
Lumbar Vertebrae
;
Bone Diseases, Metabolic/etiology*
;
Aged
;
Risk Factors
5.Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.
Bai-Ling HOU ; Chen-Chen WANG ; Ying LIANG ; Ming JIANG ; Yu-E SUN ; Yu-Lin HUANG ; Zheng-Liang MA
Chinese journal of integrative medicine 2025;31(6):499-505
OBJECTIVE:
To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
METHODS:
C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve. On day 14 after CCI modeling or sham operation, mice were intrathecal injected with 5 µL of 10% DMSO or 10 mg/kg DHC (5 µL) into the 5th to 6th lumbar intervertebral space (L5-L6). Pregnant ICR mice were sacrificed for isolating primary spinal neurons on day 14 of embryo development for in vitro experiment. Pain behaviors were evaluated by measuring the paw withdrawal mechanical threshold (PWMT) of mice. Immunofluorescence was used to observe the activation of astrocytes and microglia in mouse spinal cord. Protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), phosphorylation of N-methyl-D-aspartate receptor subunit 2B (p-NR2B), and NR2B in the spinal cord or primary spinal neurons were detected by Western blot.
RESULTS:
In CCI-induced neuropathic pain model, mice presented significantly decreased PWMT, activation of glial cells, overexpressions of iNOS, TNF-α, IL-6, and higher p-NR2B/NR2B ratio in the spinal cord (P<0.05 or P<0.01), which were all reversed by a single intrathecal injection of DHC (P<0.05 or P<0.01). The p-NR2B/NR2B ratio in primary spinal neurons were also inhibited after DHC treatment (P<0.05).
CONCLUSION
An intrathecal injection of DHC relieved CCI-induced neuropathic pain in mice by inhibiting the neuroinflammation and neuron hyperactivity.
Animals
;
Neuralgia/etiology*
;
Mice, Inbred C57BL
;
Analgesics/pharmacology*
;
Neuroinflammatory Diseases/pathology*
;
Constriction
;
Male
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Mice, Inbred ICR
;
Microglia/pathology*
;
Spinal Cord/drug effects*
;
Female
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Constriction, Pathologic/complications*
;
Interleukin-6/metabolism*
;
Astrocytes/metabolism*
;
Chronic Disease
;
Neurons/metabolism*
6.Histopathological Insights into Demyelination and Remyelination After Spinal Cord Injury in Non-human Primates.
Junhao LIU ; Zucheng HUANG ; Kinon CHEN ; Rong LI ; Zhiping HUANG ; Junyu LIN ; Hui JIANG ; Jie LIU ; Qingan ZHU
Neuroscience Bulletin 2025;41(8):1429-1447
Demyelination and remyelination play key roles in spinal cord injury (SCI), affecting the recovery of motor and sensory functions. Research in rodent models is extensive, but the study of these processes in non-human primates is limited. Therefore, our goal was to thoroughly study the histological features of demyelination and remyelination after contusion injury of the cervical spinal cord in Macaca fascicularis. In a previous study, we created an SCI model in M. fascicularis by controlling the contusion displacement. We used Eriochrome Cyanine staining, immunohistochemical analysis, and toluidine blue staining to evaluate demyelination and remyelination. The results showed demyelination ipsilateral to the injury epicenter both rostrally and caudally, the former mainly impacting sensory pathways, while the latter primarily affected motor pathways. Toluidine blue staining showed myelin loss and axonal distension at the injury site. Schwann cell-derived myelin sheaths were only found at the center, while thinner myelin sheaths from oligodendrocytes were seen at the center and surrounding areas. Our study showed that long-lasting demyelination occurs in the spinal cord of M. fascicularis after SCI, with oligodendrocytes and Schwann cells playing a significant role in myelin sheath formation at the injury site.
Animals
;
Spinal Cord Injuries/physiopathology*
;
Demyelinating Diseases/etiology*
;
Remyelination/physiology*
;
Macaca fascicularis
;
Disease Models, Animal
;
Myelin Sheath/pathology*
;
Oligodendroglia/pathology*
;
Schwann Cells/pathology*
;
Female
;
Spinal Cord/pathology*
;
Axons/pathology*
7.A spinal neural circuit for electroacupuncture that regulates gastric functional disorders.
Meng-Ting ZHANG ; Yi-Feng LIANG ; Qian DAI ; He-Ren GAO ; Hao WANG ; Li CHEN ; Shun HUANG ; Xi-Yang WANG ; Guo-Ming SHEN
Journal of Integrative Medicine 2025;23(1):56-65
OBJECTIVE:
Acupuncture therapies are known for their effectiveness in treating a variety of gastric diseases, although the mechanisms underlying these effects are not fully understood. This study tested the effectiveness of electroacupuncture (EA) at acupoints Zhongwan (RN12) and Weishu (BL21) for managing gastric motility disorder (GMD) and investigated the underlying mechanisms involved.
METHODS:
A GMD model was used to evaluate the impact of EA on various aspects of gastric function including the amplitude of gastric motility, electrogastrogram, food intake, and the rate of gastric emptying. Immunofluorescence techniques were used to explore the activation of spinal neurons by EA, specifically examining the presence of cholera toxin B subunit (CTB)-positive neurons and fibers emanating from acupoints RN12 and BL21. The stimulation of γ-aminobutyric acid (GABA)-ergic neurons in the spinal dorsal horn, the inhibition of sympathetic preganglionic neurons in the spinal lateral horn, and their collective effects on the activity of sympathetic nerves were examined.
RESULTS:
EA at RN12 and BL21 significantly improved gastric motility compromised by GMD. Notably, EA activated spinal neurons, with CTB-positive neurons and fibers from RN12 and BL21 being detectable in both the dorsal root ganglia and the spinal dorsal horn. Further analysis revealed that EA at these acupoints not only stimulated GABAergic neurons in the spinal dorsal horn but also suppressed sympathetic preganglionic neurons in the spinal lateral horn, effectively reducing excessive activity of sympathetic nerves triggered by GMD.
CONCLUSION
EA treatment at RN12 and BL21 effectively enhances gastric motility in a GMD model. The therapeutic efficacy of this approach is attributed to the activation of spinal neurons and the modulation of the spinal GABAergic-sympathetic pathway, providing a neurobiological foundation for the role of acupuncture in treating gastric disorders. Please cite this article as: Zhang MT, Liang YF, Dai Q, Gao HR, Wang H, Chen L, Huang S, Wang XY, Shen GM. A spinal neural circuit for electroacupuncture that regulates gastric functional disorders. J Integr Med. 2025; 23(1): 56-65.
Electroacupuncture
;
Animals
;
Male
;
Acupuncture Points
;
Stomach Diseases/physiopathology*
;
Rats, Sprague-Dawley
;
Gastrointestinal Motility
;
Rats
;
Gastric Emptying
;
Neurons
;
Spinal Cord
;
Stomach/physiopathology*
8.Zero-profile intervertebral fusion with cage-titanium plate for the treatment of multilevel cervical spondylotic myelopathy.
Jian-Bin ZHONG ; Yong HU ; Zhen-Tao CHU ; Wei-Xin DONG ; Zhen-Shan YUAN ; Xiao-Yang SUN ; Bing-Ke ZHU ; Ou-Jie LAI
China Journal of Orthopaedics and Traumatology 2024;37(12):1188-1195
OBJECTIVE:
To explore clinical effect of Zero-profile intervertebral fusion with cage-titanium plate in treating multilevel cervical spondylotic myelopathy.
METHODS:
From January 2016 to January 2020, 107 patients with multisegmental cervical spondylotic myelopathy treated by surgery were retrospectively analyzed and divided into Hybrid group and control group according to different surgical methods. There were 54 patients in Hybrid group, including 42 males and 12 females, aged from 33 to 77 years old with an average of (57.3±9.5) years old;20 patients with C3-C6, 27 patients with C4-C7 and 7 patients with C3-C7;Zero-profile intervertebral fusion with cage-titanium plate internal fixation was performed. There were 53 patients in control group, including 34 males and 19 females;aged from 36 to 79 years old with an average of (57.8±8.9) years old;17 patients with C3-C6, 27 patients with C4-C7, and 9 patients with C3-C7;titanium plate interbody fusion fixation was performed. Operation time, blood loss and complications between two groups were compared, visual analogue scale (VAS), Japanese Orthopedic Association (JOA) scores and neck disability index (NDI) were used to assess recovery of clinical symptoms;cervical lordosis (CL), cervical sagittal vertical axis (C-SVA), and T1 slope (T1S) were measured and compared to evaluate cervical sagittal plane parameters.
RESULTS:
All patients were followed up, Hybrid group was followed up for 24 to 64 months with an average of (31.7±18.4) months, and control group was followed up for 24 to 65 months with an average of (32.6±15.8) months. There was no significant difference in follow-up time between two groups (P>0.05). Operation time and blood loss in Hybrid group were less than those in control group (P<0.05). VAS, JOA score and NDI were significantly improved between two groups at the lastest follow-up (P<0.05). There were no significant difference in VAS, JOA and NDI scores between two groups before and after operation (P>0.05). CL in both two groups at 3 months and the latest follow-up after operation were significantly improved than those before operation (P<0.05), there were no significant difference between two groups in T1S and C-SVA before and after operation (P>0.05). Postoperative dysphagia occurred in 2 patients in Hybrid group and 9 patients in control group, and had statistically difference in the incidence of dysphagia between two groups (χ2=5.112, P=0.024). During the follow-up, there were no complications such as loosening, displacement or fracture of internal fixation between two groups.
CONCLUSION
Compared with titanium plate interbody fusion, Zero-profile intervertebral fusion combined with cage-titanium plate for the treatment of multilevel cervical spondylotic myelopathy could shorten surgical time and blood loss, reduce surgical trauma and postoperative swallowing difficulties, and is conducive to early and rapid recovery.
Humans
;
Male
;
Female
;
Middle Aged
;
Spinal Fusion/instrumentation*
;
Bone Plates
;
Titanium
;
Aged
;
Spondylosis/surgery*
;
Adult
;
Cervical Vertebrae/surgery*
;
Retrospective Studies
;
Spinal Cord Diseases/surgery*
9.Effect of Sakuranetin on Microglia-Mediated Neuroinflammation After Spinal Cord Injury.
Lin-Yu XIAO ; Yue CHEN ; Ting DUAN ; Yang SUN ; Yi-Bo XU ; Ya-Jing ZHAO ; Xue SONG ; Xing-Zhou YAN ; Jian-Guo HU
Acta Academiae Medicinae Sinicae 2024;46(6):836-848
Objective To investigate the effects of sakuranetin (SK) on motor functions in the mouse model of spinal cord injury (SCI) and decipher the mechanism. Methods Fifty-four C57BL/6J mice were randomized into sham,SCI,and SK groups.The mice in the sham group underwent only laminectomy at T9,while those in the SCI and SK groups were subjected to spinal cord contusion injury at T9.Behavioral tests were conducted at different time points after surgery to evaluate the motor functions of mice in each group.The pathological changes in the tissue were observed to assess the extent of SCI in each group.The role and mechanism of SK in SCI were predicted by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses.Reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence were employed to evaluate the inflammation and activation of microglia in SCI mice.BV2 cells in vitro were classified into control (Con),lipopolysaccharide (LPS),and LPS+SK groups.The effects of SK intervention on the release of inflammatory cytokines and the activation of BV2 cells were evaluated.Furthermore,the phosphatidylinositol-3-kinase(PI3K)/protein kinase B (AKT) signaling pathway activator insulin-like growth factor-1 (IGF-1) was used to treat the SK-induced BV2 cells in vitro (SK+IGF-1 group),and SK was used to treat the IGF-1-induced BV2 cells in vitro (IGF-1+SK group).Western blotting was conducted for molecular mechanism validation. Results Behavioral tests and histological staining results showed that compared with the SCI group,the SK group exhibited improved motor abilities and reduced area of damage in the spinal cord tissue (all P<0.001).The GO enrichment analysis predicted that SK may be involved in the inflammation following SCI.The KEGG enrichment analysis predicted that SK regulated the PI3K/Akt pathway to exert the neuroprotective effect.The results from in vitro and in vivo experiments showed that SK lowered the levels of tumor necrosis factor-α,interleukin-6,and interleukin-1β and inhibited the activation of microglia (all P<0.05).The results of Western blotting showed that SK down-regulated the phosphorylation levels of PI3K and Akt (all P<0.001) and inhibited the IGF-1-induced elevation of PI3K and Akt phosphorylation levels (all P<0.001).Conversely,IGF-1 had the opposite effects (P=0.001,P<0.001).The results of reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence showed that the SK+IGF-1 group had higher levels of inflammatory cytokines and more activated microglia than the SK group(all P<0.05). Conclusion SK may suppress the activation of the PI3K/Akt pathway to inhibit the inflammation mediated by SCI-induced activation of microglia,ameliorate the pathological damage of the spinal cord tissue,and promote the recovery of motor functions in SCI mice.
Animals
;
Spinal Cord Injuries/pathology*
;
Mice
;
Microglia/metabolism*
;
Mice, Inbred C57BL
;
Neuroinflammatory Diseases/pathology*
;
Signal Transduction/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Male
;
Inflammation
;
Lipopolysaccharides
;
Insulin-Like Growth Factor I/metabolism*
;
Disease Models, Animal
10.Mechanism of Mongolian drug Naru-3 in initiation of neuroinflammation of neuropathic pain from MMP9/IL-1β signaling pathway.
Fang-Ting ZHOU ; Ying ZONG ; Yuan-Bin LI ; Ren-Li CAO ; Wu-Qiong HOU ; Li-Ting XU ; Fei YANG ; Yan-Li GU ; Xiao-Hui SU ; Qiu-Yan GUO ; Wei-Jie LI ; Hui XIONG ; Chao WANG ; Na LIN
China Journal of Chinese Materia Medica 2023;48(15):4173-4186
Neuropathic pain(NP) has similar phenotypes but different sequential neuroinflammatory mechanisms in the pathological process. It is of great significance to inhibit the initiation of neuroinflammation, which has become a new direction of NP treatment and drug development in recent years. Mongolian drug Naru-3 is clinically effective in the treatment of trigeminal neuralgia, sciatica, and other NPs in a short time, but its pharmacodynamic characteristics and mechanism of analgesia are still unclear. In this study, a spinal nerve ligation(SNL) model simulating clinical peripheral nerve injury was established and the efficacy and mechanism of Naru-3 in the treatment of NPs was discussed by means of behavioral detection, side effect evaluation, network analysis, and experimental verification. Pharmacodynamic results showed that Naru-3 increased the basic pain sensitivity threshold(mechanical hyperalgesia and thermal radiation hyperalgesia) in the initiation of SNL in animals and relieved spontaneous pain, however, there was no significant effect on the basic pain sensitivity threshold and motor coordination function of normal animals under physiological and pathological conditions. Meanwhile, the results of primary screening of target tissues showed that Naru-3 inhibited the second phase of injury-induced nociceptive response of formalin test in mice and reduced the expression of inflammatory factors in the spinal cord. Network analysis discovered that Naru-3 had synergy in the treatment of NP, and its mechanism was associated with core targets such as matrix metalloproteinase-9(MMP9) and interleukin-1β(IL-1β). The experiment further took the dorsal root ganglion(DRG) and the stage of patho-logical spinal cord as the research objects, focusing on the core targets of inducing microglial neuroinflammation. By means of Western blot, immunofluorescence, agonists, antagonists, behavior, etc., the mechanism of Naru-3 in exerting NP analgesia may be related to the negative regulation of the MMP9/IL-1β signaling pathway-mediated microglia p38/IL-1β inflammatory loop in the activation phase. The relevant research enriches the biological connotation of Naru-3 in the treatment of NP and provides references for clinical rational drug use.
Rats
;
Mice
;
Animals
;
Matrix Metalloproteinase 9/metabolism*
;
Rats, Sprague-Dawley
;
Neuroinflammatory Diseases
;
Interleukin-1beta/metabolism*
;
Spinal Cord/metabolism*
;
Signal Transduction
;
Hyperalgesia/metabolism*
;
Neuralgia/metabolism*

Result Analysis
Print
Save
E-mail