1.Automatic brain segmentation in cognitive impairment: Validation of AI-based AQUA software in the Southeast Asian BIOCIS cohort.
Ashwati VIPIN ; Rasyiqah BINTE SHAIK MOHAMED SALIM ; Regina Ey KIM ; Minho LEE ; Hye Weon KIM ; ZunHyan RIEU ; Nagaendran KANDIAH
Annals of the Academy of Medicine, Singapore 2025;54(8):467-475
INTRODUCTION:
Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc., Seoul, Republic of Korea) segmentation software in a Southeast Asian community-based cohort with normal cognition, mild cognitive impairment (MCI) and dementia.
METHOD:
Study participants belonged to the community-based Biomarker and Cognition Study in Singapore. Participants aged between 30 and 95 years, having cognitive concerns, with no diagnosis of major psychiatric, neurological or systemic disorders who were recruited consecutively between April 2022 and July 2023 were included. Participants underwent neuropsychological assessments and structural MRI, and were classified as cognitively normal, with MCI or with dementia. MRI pre-processing using automated pipelines, along with human-based visual ratings, were compared against AI-based automated AQUA output. Default mode network grey matter (GM) volumes were compared between cognitively normal, MCI and dementia groups.
RESULTS:
A total of 90 participants (mean age at visit was 63.32±10.96 years) were included in the study (30 cognitively normal, 40 MCI and 20 dementia). Non-parametric Spearman correlation analysis indicated that AQUA-based and human-based visual ratings were correlated with total (ρ=0.66; P<0.0001), periventricular (ρ=0.50; P<0.0001) and deep (ρ=0.57; P<0.0001) white matter hyperintensities (WMH). Additionally, volumetric WMH obtained from AQUA and automated pipelines was also strongly correlated (ρ=0.84; P<0.0001) and these correlations remained after controlling for age at visit, sex and diagnosis. Linear regression analyses illustrated significantly different AQUA-derived default mode network GM volumes between cognitively normal, MCI and dementia groups. Dementia participants had significant atrophy in the posterior cingulate cortex compared to cognitively normal participants (P=0.021; 95% confidence interval [CI] -1.25 to -0.08) and in the hippocampus compared to cognitively normal (P=0.0049; 95% CI -1.05 to -0.16) and MCI participants (P=0.0036; 95% CI -1.02 to -0.17).
CONCLUSION
Our findings demonstrate high concordance between human-based visual ratings and AQUA-based ratings of WMH. Additionally, the AQUA GM segmentation pipeline showed good differentiation in key regions between cognitively normal, MCI and dementia participants. Based on these findings, the automated AQUA software could aid clinicians in examining MRI scans of patients with cognitive impairment.
Humans
;
Cognitive Dysfunction/pathology*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Middle Aged
;
Female
;
Aged
;
Artificial Intelligence
;
Software
;
Dementia/diagnostic imaging*
;
Aged, 80 and over
;
Adult
;
Singapore
;
Neuropsychological Tests
;
Brain/pathology*
;
Cohort Studies
;
Gray Matter/pathology*
;
Southeast Asian People
2.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
3.A portable steady-state visual evoked potential brain-computer interface system for smart healthcare.
Yisen ZHU ; Zhouyu JI ; Shuran LI ; Haicheng WANG ; Yunfa FU ; Hongtao WANG
Journal of Biomedical Engineering 2025;42(3):455-463
This paper realized a portable brain-computer interface (BCI) system tailored for smart healthcare. Through the decoding of steady-state visual evoked potential (SSVEP), this system can rapidly and accurately identify the intentions of subjects, thereby meeting the practical demands of daily medical scenarios. Firstly, an SSVEP stimulation interface and an electroencephalogram (EEG) signal acquisition software were designed, which enable the system to execute multi-target and multi-task operations while also incorporating data visualization functionality. Secondly, the EEG signals recorded from the occipital region were decomposed into eight sub-frequency bands using filter bank canonical correlation analysis (FBCCA). Subsequently, the similarity between each sub-band signal and the reference signals was computed to achieve efficient SSVEP decoding. Finally, 15 subjects were recruited to participate in the online evaluation of the system. The experimental results indicated that in real-world scenarios, the system achieved an average accuracy of 85.19% in identifying the intentions of the subjects, and an information transfer rate (ITR) of 37.52 bit/min. This system was awarded third prize in the Visual BCI Innovation Application Development competition at the 2024 World Robot Contest, validating its effectiveness. In conclusion, this study has developed a portable, multifunctional SSVEP online decoding system, providing an effective approach for human-computer interaction in smart healthcare.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual/physiology*
;
Electroencephalography
;
Signal Processing, Computer-Assisted
;
Software
;
Adult
;
Male
4.Preliminary application of human-computer interaction CT imaging AI recognition and positioning technology in the treatment of type C1 distal radius fractures.
Yong-Zhong CHENG ; Xiao-Dong YIN ; Fei LIU ; Xin-Heng DENG ; Chao-Lu WANG ; Shu-Ke CUI ; Yong-Yao LI ; Wei YAN
China Journal of Orthopaedics and Traumatology 2025;38(1):31-40
OBJECTIVE:
To explore the accuracy of human-computer interaction software in identifying and locating type C1 distal radius fractures.
METHODS:
Based on relevant inclusion and exclusion criteria, 14 cases of type C1 distal radius fractures between September 2023 and March 2024 were retrospectively analyzed, comprising 3 males and 11 females(aged from 27 to 82 years). The data were assigned randomized identifiers. A senior orthopedic physician reviewed the films and measured the ulnar deviation angle, radial height, palmar inclination angle, intra-articular step, and intra-articular gap for each case on the hospital's imaging system. Based on the reduction standard for distal radius fractures, cases were divided into reduction group and non-reduction group. Then, the data were sequentially imported into a human-computer interaction intelligent software, where a junior orthopedic physician analyzed the same radiological parameters, categorized cases, and measured fracture details. The categorization results from the software were consistent with manual classifications (6 reduction cases and 8 non-reduction cases). For non-reduction cases, the software performed further analyses, including bone segmentation and fracture recognition, generating 8 diagnostic reports containing fracture recognition information. For the 6 reduction cases, the senior and junior orthopedic physicians independently analyzed the data on the hospital's imaging system and the AI software, respectively. Bone segments requiring reduction were identified, verified by two senior physicians, and measured for displacement and rotation along the X (inward and outward), Z (front and back), and Y (up and down) axes. The AI software generated comprehensive diagnostic reports for these cases, which included all measurements and fracture recognition details.
RESULTS:
Both the manual and AI software methods consistently categorized the 14 cases into 6 reduction and 8 non-reduction groups, with identical data distributions. A paired sample t-test revealed no statistically significant differences (P>0.05) between the manual and software-based measurements for ulnar deviation angle, radial ulnar bone height, palmar inclination angle, intra-articular step, and joint space. In fracture recognition, the AI software correctly identified 10 C-type fractures and 4 B-type fractures. For the 6 reduction cases, a total of 24 bone fragments were analyzed across both methods. After verification, it was found that the bone fragments identified by the two methods were consistent. A paired sample t-tests revealed that the identified bone fragments and measured displacement and rotation angles along the X, Y, and Z axes were consistent between the two methods. No statistically significant differences(P>0.05) were found between manual and software measurements for these parameters.
CONCLUSION
Human-computer interaction software employing AI technology demonstrated comparable accuracy to manual measurement in identifying and locating type C1 distal radius fractures on CT imaging.
Humans
;
Male
;
Female
;
Radius Fractures/surgery*
;
Middle Aged
;
Adult
;
Aged
;
Aged, 80 and over
;
Tomography, X-Ray Computed/methods*
;
Retrospective Studies
;
Software
;
Wrist Fractures
5.Application of OpenSim musculoskeletal model in biomechanics research of orthopedics and traumatology.
Rui LI ; Yang LIU ; Zhao-Jie ZHANG ; Xin-Wei ZHANG ; Yan-Zhen ZHANG ; Yan-Qi HU ; Can YANG ; Shu-Shi MAO ; Jia-Ming QIU
China Journal of Orthopaedics and Traumatology 2025;38(3):319-324
OpenSim is an open source, free motion simulation and gait analysis software, which can be used to dynamically simulate and analyze the complex motion of the human body, and is widely used in human biomechanical research. Since OpenSim can analyze multi-dimensional motion data such as muscle strength, joint torque, and muscle synergistic activation during human movement, it can be used to study the biomechanical mechanism of musculoskeletal imbalance diseases and various treatment methods in TCM orthopedics, and has a broad application prospect in the field of TCM orthopedics. By the analysis of the basic characteristics, elements, analysis process, and application prospects of OpenSim, it is concluded that OpenSim musculoskeletal model has a large application space in the field of traditional Chinese medicine orthopedic, which is helpful to explain the pathogenesis and mechanism of diseases, and promote the precision diagnosis and treatment of orthopedics diseases;the application of OpenSim musculoskeletal model can solve the problem that the previous research paid attention to the bone malalignment and not enough attention to the tendon, and provide a new method for the research of orthopedic diseases. At present, there are still problems in the promotion and application of OpenSim, such as large equipment requirements and high operation threshold. Therefore, multidisciplinary cooperation, clinical research, and data sharing are the basic research strategies in this field.
Humans
;
Biomechanical Phenomena
;
Orthopedics
;
Traumatology
;
Software
;
Medicine, Chinese Traditional
;
Musculoskeletal System
;
Models, Biological
6.Exploration of Rational Use of DSA Equipment in IoT and Clinical Service.
Jie YANG ; Xiaomin REN ; Jinning ZHANG
Chinese Journal of Medical Instrumentation 2025;49(2):186-190
OBJECTIVE:
This study aims to address the configuration and efficiency issues in the use of digital subtraction angiography (DSA) equipment through the practical implementation of a rationalization platform based on the Internet of Things (IoT).
METHODS:
By employing IoT and data integration technologies, the deep integration of DSA equipment operational data with clinical data was achieved to construct a knowledge base for rational use of DSA equipment. Simultaneously, a knowledge base was developed using software engineering techniques to visually display data analysis results.
RESULTS:
Through thorough data analysis, an imbalance in DSA usage between the southern and northern hospital campuses was identified. Addressing this issue, optimizations were implemented based on the data analysis results, which ultimately yielded significant effects. These adjustments not only effectively alleviated the pressure on DSA equipment usage in the southern campus, but also increased equipment utilization in the northern district (the average daily working hours have increased from 4.64 h to 7.19 h), shortened patient appointment wait time (the appointment duration in the southern campus decreased by 21.86% year-on-year, while the appointment duration in the northern campus decreased by 20.51% year-on-year).
CONCLUSION
Through the practical implementation of a DSA rationalization platform based on IoT, this study not only successfully explored methods for rational DSA usage but also provided valuable reference for the rational management of medical equipment.
Internet of Things
;
Angiography, Digital Subtraction/instrumentation*
;
Humans
;
Software
7.Research and Design of Varian Accelerator Quality Management Monitoring System Based on Log Files.
Jinhong YAO ; Yan JIN ; Xinyu ZHAO
Chinese Journal of Medical Instrumentation 2025;49(3):276-279
In order to track the running status of the accelerator in real time, discover potential problems in time, reduce the failure rate, and ensure the safety of radiotherapy patients, a linear accelerator quality management monitoring system is designed based on log files. The system adopts B/S architecture, with the server written in Python3.7 language, and is built based on Django2.2.7 framework. The system uses Python3.7 and Pylinac packages to analyze the log files of each plan, obtaining the planned beam quantity, flux gamma pass rate, and position information of multileaf collimator, etc., to realize the quality monitoring of medical linear accelerator, and customize the development of accelerator spare parts and maintenance management modules. According to statistics, after the establishment of the quality management monitoring system, the accelerator has achieved a 16% reduction in failure rate and a 30% reduction in the downtime rate, which ensures its stable operation in clinical settings.
Particle Accelerators
;
Quality Control
;
Software
8.Key Aspects of Performance Evaluation on Droplet Digital PCR Instrument.
Chinese Journal of Medical Instrumentation 2025;49(3):340-343
From the perspective of performance evaluation, this paper describes briefly the concerns of study on each component module and the entire instrument, clinical items, software, and product testing on droplet digital PCR instruments, including the study methods and quality control requirements. The increase of the research and development efficiency of products and contribute to the promotion of application of digital PCR instruments in clinical laboratories are expected.
Polymerase Chain Reaction/methods*
;
Quality Control
;
Software
;
Humans
9.Study on the Clinical Application Effect of Low-Field Infant MRI.
Caixian ZHENG ; Siwei XIANG ; Chang SU ; Linyi ZHANG ; Can LAI ; Tianming YUAN ; Lu ZHOU ; Yunming SHEN ; Kun ZHENG
Chinese Journal of Medical Instrumentation 2025;49(5):501-506
OBJECTIVE:
Evaluate the clinical application effect of low-field infant MRI.
METHODS:
Using literature review, expert consultation, and two rounds of Delphi to determine the evaluation index system. Then retrospectively analyze and compare the data of low-field infant MRI and high-field MRI from January 2023 to December 2024.
RESULTS:
There is a certain gap between low-field infant MRI and high-field MRI in terms of signal-to-noise ratio, image uniformity, software system reliability, scanning time, user interface friendliness and image result consistency. However, there was no difference in terms of spatial resolution and image quality. The noise, hardware system reliability, mean time between failure and the rate of examination completed without sedation are better than that of high-field MRI.
CONCLUSION
Low-field infant MRI meets needs of clinical diagnostic and has stable performance. It can be used as a routine screening tool for brain diseases near the bed.
Magnetic Resonance Imaging/methods*
;
Humans
;
Infant
;
Retrospective Studies
;
Signal-To-Noise Ratio
;
Reproducibility of Results
;
Brain Diseases/diagnostic imaging*
;
Brain/diagnostic imaging*
;
Software
10.Artificial intelligence-enhanced physics-based computational modeling technologies for proteins.
Baoyan LIU ; Shuai LI ; Hao SU ; Xiang SHENG
Chinese Journal of Biotechnology 2025;41(3):917-933
Computational modeling is an invaluable tool for mechanism analysis, directed engineering, and rational design of biological parts, metabolic networks, and even cellular systems. It can provide new technological solutions to address biological challenges at different levels and has become a central focus of research in biomanufacturing. In the computational modeling of proteins, which are the key parts in biological systems, the traditional physics-based methods (computer software and mathematical model) have been widely used to study the physical and chemical processes in the functioning of proteins, and have thus been recognized as a powerful tool for understanding complex biological systems and guiding experimental designs. As the scale of computational modeling continues to expand, traditional modeling techniques face difficulties in balancing computational accuracy and speed. In recent years, the explosive growth of biological data has made it possible to construct high-performance artificial intelligence (AI) models, which brings new opportunities to the computational modeling of proteins, and the AI-enhanced physics-based computational modeling technologies have emerged. This combined strategy not only incorporates the chemical knowledge and established physical principles but also is powerful in data processing and pattern recognition, which greatly improves the computational efficiency and prediction accuracy, as well as possesses stronger interpretation ability, transferability, and robustness. The AI-enhanced physics-based computational modeling technologies have already shown great potential and value in biocatalysis, paving a new way for the future development of biomanufacturing.
Artificial Intelligence
;
Proteins/chemistry*
;
Computer Simulation
;
Software
;
Computational Biology/methods*

Result Analysis
Print
Save
E-mail