1.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
2.Cucurbitacin B alleviates skin lesions and inflammation in a psoriasis mouse model by inhibiting the cGAS-STING signaling pathway.
Yijian ZHANG ; Xueting WANG ; Yang YANG ; Long ZHAO ; Huiyang TU ; Yiyu ZHANG ; Guoliang HU ; Chong TIAN ; Beibei ZHANG ; Zhaofang BAI ; Bin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):428-436
Objective To investigate the effects of cucurbitacin B (CucB) on alleviating skin lesions and inflammation in psoriasis mice via the cGAS-STING signaling pathway. Methods The expression of genes associated with the cGAS-STING signaling pathway in psoriatic lesions and non-lesional skin was analyzed, and hallmark gene set enrichment analysis was performed. The cytotoxicity of CucB on BMDMs was evaluated using the CCK-8 assay. The expression levels of genes and proteins related to the cGAS-STING signaling pathway, along with the secretion of inflammatory cytokines, were measured at different concentrations of CucB using quantitative PCR, Western blotting, and ELISA. Imiquimod-induced psoriasis BALB/c mice were divided into four groups: normal group, model group, low-dose CucB group [0.1 mg/ (kg.d)], and high-dose CucB group [0.4 mg/ (kg.d)], with five mice per group. PASI scoring was performed to assess the severity of psoriasis after 6 days of treatment, and HE staining was conducted to observe pathological damage. Meanwhile, the mRNA levels of inflammatory cytokines and their secretion were detected by qPCR and ELISA. Results Most cGAS-STING signaling-related genes were upregulated in lesional skin of psoriasis patients, and the hallmark gene set enrichment analysis revealed that the most significantly upregulated genes were primarily associated with immune response signaling pathways. CucB inhibited dsDNA-induced phosphorylation of interferon regulatory factor 3 (IRF3) and STING proteins in both bone-marrow derived macrophages(BMDMs) and THP-1 cells. CucB also suppressed dsDNA-induced mRNA expression of IFNB1, TNF, IFIT1, CXCL10, ISG15, and reduced the secretion of cytokines such as IFN-β, IL-1β, and TNF-α in THP-1 cells. In the imiquimod-induced psoriasis mouse model, CucB treatment reduced psoriatic symptoms, alleviated skin lesions, and attenuated inflammation. ELISA and qPCR results showed that CucB significantly reduced serum secretion levels of IL-6, TNF-α, and IL-1β, as well as the mRNA levels of IL23A, IL1B, IL6, TNF, and IFNB1. Conclusion CucB inhibits cytoplasmic DNA-induced activationc of the GAS-STING pathway. CucB significantly attenuates skin lesions and inflammation in IMQ-induced psoriatic mice, and the potential molecular mechanism may be related to the down-regulation of the cGAS-STING pathway.
Animals
;
Psoriasis/pathology*
;
Signal Transduction/drug effects*
;
Membrane Proteins/genetics*
;
Mice
;
Nucleotidyltransferases/genetics*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
;
Triterpenes/therapeutic use*
;
Humans
;
Cytokines/metabolism*
;
Inflammation/drug therapy*
;
Male
3.Research progress on cellular metabolic reprogramming in skin fibrosis.
Shutong QIAN ; Siya DAI ; Chunyi GUO ; Jinghong XU
Journal of Zhejiang University. Medical sciences 2025;54(5):592-601
Skin fibrosis is primarily characterized by excessive fibroblasts proliferation and aberrant extracellular matrix accumulation, leading to pathological conditions such as hypertrophic scars, keloids, and systemic sclerosis. This dynamic and complex process involves intricate interactions among various resident skin cells and inflammatory cells, ultimately resulting in extracellular matrix deposition and even invasive growth. The maintenance of cellular phenotypes and functions relies on dynamic metabolic responses, and cellular signal transduction is closely coupled with metabolic processes. Given that the coupling of cell metabolism and signaling in the skin fibrosis microenvironment plays a critical role in inflammatory responses and fibrotic activation, modulation of these metabolic pathways may offer novel therapeutic strategies for inhibiting or even reversing the progression of skin fibrosis. This review systematically summarizes the metabolic characteristics of various cell types involved in skin fibrosis, with a focus on core metabolic reprogramming mechanisms such as hyperactive glycolysis, dysregulated fatty acid metabolism, cellular metabolic dysfunction and dysregulated mTOR/AMPK signaling. Furthermore, potential intervention strategies targeting these metabolic pathways are explored, thereby providing new research perspectives for the treatment of skin fibrosis.
Humans
;
Fibrosis/metabolism*
;
Skin/metabolism*
;
Signal Transduction
;
Fibroblasts/pathology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Skin Diseases/pathology*
;
Cellular Reprogramming
;
Metabolic Reprogramming
4.Single-cell transcriptomic analysis reveals immune dysregula-tion and macrophage reprogramming in diabetic foot ulcers.
Chunli HUANG ; Yu JIANG ; Wei JIAO ; Ying SUI ; Chunlei WANG ; Yongtao SU
Journal of Zhejiang University. Medical sciences 2025;54(5):602-610
OBJECTIVES:
To elucidate the underlying mechanisms of macrophage-mediated inflammation and tissue injury in diabetic foot ulcer (DFU).
METHODS:
Skin tissue samples were collected from patients with DFU and with non-DFU. A total of 79 272 high-quality cell transcriptomes were obtained using single-cell RNA sequencing. An unbiased clustering approach was employed to identify cell subpopulations. Seurat functions were used to identify differentially expressed genes between DFU and non-DFU groups, and gene ontology (GO) enrichment analysis was used to reveal gene function. Furthermore, cell-cell communication network construction and ligand-receptor interaction analysis were performed to reveal the mechanisms underlying cellular interactions and signaling regulation in the DFU microenvironment from multiple perspectives.
RESULTS:
The results revealed a significant expansion of myeloid cells in DFU tissues, alongside a marked reduction in structural cells such as endothelial cells, epithelial cells, and smooth muscle cells. Major cell types underwent functional reprogramming, characterized by immune activation and impaired tissue remodeling. Specifically, macrophages in DFU skin tissues exhibited a shift toward a pro-inflammatory M1 phenotype, with upregulation of genes associated with inflammation and oxidative stress. Cell communication analysis further demonstrated that M1 macrophages served as both primary signal receivers and influencers in the COMPLEMENT pathway mediated communication network, and as key signal senders and mediators in the secreted phosphoprotein 1 (SPP1) pathway mediated communication network, actively shaping the inflammatory microenvironment. Key ligand-receptor interactions driving macrophage signaling were identified, including C3-(ITGAM+ITGB2) and SPP1-CD44.
CONCLUSIONS
This study establishes a comprehensive single-cell atlas of DFU, revealing the role of macrophage-driven cellular networks in chronic inflammation and impaired healing. These findings may offer potential novel therapeutic targets for DFU treatment.
Humans
;
Macrophages/immunology*
;
Diabetic Foot/pathology*
;
Single-Cell Analysis
;
Transcriptome
;
Gene Expression Profiling
;
Inflammation
;
Skin
;
Cell Communication
;
Signal Transduction
;
Cellular Reprogramming
5.Pathogenesis and mechanism of serine protease 23 in skin fibrosis of systemic sclerosis.
Xiandun YUAN ; Zhaohua LI ; Dan XU ; Ting LI ; Dan FANG ; Rong MU
Journal of Peking University(Health Sciences) 2025;57(5):903-910
OBJECTIVE:
It has been reported that the mRNA expression of serine protease 23 (PRSS23) was increased in skin fibroblasts from systemic sclerosis patients (SSc). The purpose of this study is to explore the pathogenetic effect and mechanism of PRSS23 in skin fibrosis of SSc.
METHODS:
The expression of PRSS23 in skin tissues from the SSc patients and healthy controls was detected by immunohisto-chemistry. Fibroblasts isolated from fresh skin tissue were used to detect the expression of PRSS23 by real-time quantitative PCR (RT-qPCR) and Western blot. Overexprssion of PRSS23 in BJ, the fibroblasts cell line of skin, was constructed by lentivirus. After stimulation with 400 μmol/L hydrogen peroxide for 12 h, Annexin V/7-AAD staining was used to detect apoptosis of fibroblasts; flow cytometry and Western blot were used to detect the expression of apoptosis-related protein cleaved Caspase-3. The expression of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in fibroblasts was detected by RT-qPCR and enzyme linked immunosorbent assay (ELISA).
RESULTS:
Compared with the healthy controls, the expression of PRSS23 in skin tissues of the SSc patients was significantly increased [4.952 (3.806-5.439) vs. 0.806 (0.395-1.173), P < 0.001], and fibroblast was the main cell that expressed PRSS23. The mRNA [27.59 (25.02-30.00) vs. 1.00, P < 0.001] and protein [0.675 (0.587-0.837) vs. 0.451 (0.342-0.502), P=0.029] of PRSS23 in skin fibroblasts isolated from the SSc patients were significantly up-regulated. Compared with the control group, the anti-apoptotic ability of skin fibroblasts overexpressing PRSS23 was enhanced, and the proportion of apoptotic cells was significantly reduced after hydrogen peroxide induction [(5.043±1.097)% vs. (17.480±3.212)%, P=0.022], the expression of apoptosis-related protein cleaved Caspase-3 was also markedly reduced [(0.718±0.022) vs. (1.422±0.105), P=0.003]. In addition, the mRNA [(99.780±1.796) vs. (1.000±0.004), P < 0.001] and protein [(211.600±2.431) ng/L vs. (65.930±1.768) ng/L, P < 0.001] of IL-6 in the fibroblasts overexpressing PRSS23 were significantly up-regulated; the mRNA[(3.555±0.555) vs. (1.000±0.004), P < 0.001] and protein levels [(41.190±0.949) ng/L vs. (31.150±0.360) ng/L, P < 0.001] of TNF-α in the fibroblasts overexpressing PRSS23 were also significantly up-regulated.
CONCLUSION
The expression of PRSS23 is increased in skin fibroblasts of SSc patients. PRSS23 can inhibit cell apoptosis, promote the secretion of inflammatory factors such as IL-6 and TNF-α, and regulate the process that skin fibroblasts transform into pro-inflammatory type. So, PRSS23 is associated with the development of skin fibrosis.
Humans
;
Scleroderma, Systemic/enzymology*
;
Fibroblasts/pathology*
;
Apoptosis
;
Skin/metabolism*
;
Fibrosis
;
Interleukin-6/metabolism*
;
Caspase 3/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Male
;
Female
;
Cells, Cultured
;
RNA, Messenger/metabolism*
;
Middle Aged
;
Adult
;
Serine Endopeptidases/genetics*
6.Characteristics and differential diagnosis of common verrucous proliferative skin diseases under dermoscopy and reflectance confocal microscopy.
Lu ZHOU ; Yule FU ; Jian HUANG ; Zhen TANG ; Jianyun LU ; Lina TAN ; Dan WANG ; Jinrong ZENG ; Jia WANG ; Lihua GAO
Journal of Central South University(Medical Sciences) 2025;50(3):358-365
OBJECTIVES:
Verrucous epidermal nevus (VEN), seborrheic keratosis (SK), verruca plana (VP), verruca vulgaris (VV), and nevus sebaceous (NS) are common verrucous proliferative skin diseases with similar clinical appearances, often posing diagnostic challenges. Dermoscopy and reflectance confocal microscopy (RCM) can aid in their differentiation, yet their specific features under these tools have not been systematically described. This study aims to summarize and analyze the dermoscopic and RCM features of VEN, SK, VP, VV, and NS.
METHODS:
A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled. Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.
RESULTS:
Under dermoscopy, the 5 diseases displayed distinct characteristics: VEN typically showed gyriform structures; SK was characterized by gyriform structures, comedo-like openings, and milia-like cysts; VP and VV featured dotted vessels and frogspawn-like structures; NS presented as brownish-yellow globules. RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases. Specific features included gyriform structures and elongated rete ridges in VEN; pseudocysts and gyriform structures in SK; evenly distributed ring-like structures in VP; vacuolated cells and papillomatous proliferation in VV; and frogspawn-like structures in NS.
CONCLUSIONS
These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM. The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.
Humans
;
Dermoscopy/methods*
;
Diagnosis, Differential
;
Microscopy, Confocal/methods*
;
Male
;
Female
;
Adult
;
Middle Aged
;
Adolescent
;
Keratosis, Seborrheic/pathology*
;
Young Adult
;
Warts/diagnosis*
;
Child
;
Aged
;
Skin Diseases/pathology*
;
Nevus, Sebaceous of Jadassohn/diagnosis*
;
Skin Neoplasms/diagnosis*
;
Child, Preschool
7.Diagnostic value of reflectance confocal microscopy in papular dermatoses of the female vulva.
Zhen TANG ; Lingxue HU ; Yu RAO ; Ruijian REN ; Shu DING
Journal of Central South University(Medical Sciences) 2025;50(3):366-372
OBJECTIVES:
Papular dermatoses commonly affecting the female vulva, such as molluscum contagiosum, syringoma, lymphangioma, folliculitis, verruca vulgaris, ectopic sebaceous glands, and bowenoid papulosis, often present with similar clinical appearances and are frequently misdiagnosed. This study aims to explore the clinical diagnostic value of reflectance confocal microscopy (RCM) in differentiating these conditions.
METHODS:
A retrospective analysis was conducted on RCM imaging and histopathological findings from lesion sites in 172 female patients with vulval papular dermatoses. RCM characteristics confirmed by biopsy were summarized and diagnostic clues were explored.
RESULTS:
RCM diagnosis was consistent with histopathological diagnosis in 147 out of 172 cases (85.47%). Molluscum contagiosum, syringoma, lymphangioma, and folliculitis all exhibited cystic-like structures under RCM, differing in the location of the structures, wall characteristics, internal contents, and reflectivity. Verruca vulgaris, ectopic sebaceous glands, and bowenoid papulosis lacked such structures. Verruca vulgaris showed distinctive low-refractive vacuolated cells in the spinous layer; bowenoid papulosis exhibited mild cytologic atypia in the spinous layer; ectopic sebaceous glands were characterized by moderately to low-refractive, fish roe-like sebaceous lobules within the dermis.
CONCLUSIONS
RCM enables noninvasive, real-time, and dynamic visualization of key diagnostic and differential features of common vulvar papular dermatoses in women, offering high diagnostic value.
Humans
;
Female
;
Microscopy, Confocal/methods*
;
Retrospective Studies
;
Adult
;
Vulvar Diseases/diagnosis*
;
Middle Aged
;
Young Adult
;
Aged
;
Adolescent
;
Diagnosis, Differential
;
Child
;
Skin Diseases/pathology*
;
Molluscum Contagiosum/diagnosis*
8.Successful in situ 5-aminolevulinic acid photodynamic therapy in a 53-year-old female with cutaneous squamous cell carcinoma.
Limin LUO ; Xiaoling JIANG ; Jianjun QIAO ; Hong FANG ; Jun LI
Journal of Zhejiang University. Science. B 2025;26(9):915-922
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), as certain forms of non-melanoma skin cancer (NMSC) or keratinocyte carcinoma, are the most common forms of malignant neoplasms worldwide (Sharp et al., 2024). BCC and cSCC have been identified as two major components of NMSC, comprising one-third of all malignancies (Burton et al., 2016). Generally speaking, patients with NMSC tend to have relatively favorable survival outcomes, while different histopathological subtypes of NMSC exhibit distinct biological behaviors (Stătescu et al., 2023). Keratinocyte carcinoma, although not considered as deadly as melanoma, tends to metastasize if left untreated (Civantos et al., 2023; Nanz et al., 2024). cSCC can evolve locally, then aggressively metastasize, invade, and even lead to fatal consequences in a subset of patients (Winge et al., 2023). A solid, pigmented, smooth plaque or a hyperkeratotic papule with or without central ulceration and hemorrhage appears to be characteristic of cSCC (Thompson et al., 2016; Zhou et al., 2023). Of note, a rare type of intraepidermal cSCC in situ often appears as a velvety, demarcated, slightly raised erythematous plaque on the genitalia of men (Yamaguchi et al., 2016). Accounting for approximately 16.0% of scalp tumors and with a rising incidence, cSCC is now the second most common NMSC in humans (Verdaguer-Faja et al., 2024). According to the latest statistics, up to 2%‒5% of cSCCs in situ may gradually progress into invasive cSCCs in the final step (Rentroia-Pacheco et al., 2023). Several risk factors for the carcinogenesis and development of cSCC have been identified, including age, accumulative exposure to ultraviolet light radiation A and B, human papillomavirus infection, arsenic ingestion, chronic scarring, xeroderma pigmentosa, a relevant history of ionizing radiation, androgenetic alopecia in males, and immunosuppression therapy (Martinez and Otley, 2001; Welsch et al., 2012; Mortaja and Demehri, 2023).
Humans
;
Aminolevulinic Acid/therapeutic use*
;
Skin Neoplasms/pathology*
;
Photochemotherapy/methods*
;
Female
;
Carcinoma, Squamous Cell/pathology*
;
Middle Aged
;
Photosensitizing Agents/therapeutic use*
;
Carcinoma, Basal Cell/drug therapy*
9.An efficient and lightweight skin pathology detection method based on multi-scale feature fusion using an improved RT-DETR model.
Yuying REN ; Lingxiao HUANG ; Fang DU ; Xinbo YAO
Journal of Southern Medical University 2025;45(2):409-421
OBJECTIVES:
The presence of multi-scale skin lesion regions and image noise interference and limited resources of auxiliary diagnostic equipment affect the accuracy of skin disease detection in skin disease detection tasks. To solve these problems, we propose a highly efficient and lightweight skin disease detection model using an improved RT-DETR model.
METHODS:
A lightweight FasterNet was introduced as the backbone network and the FasterNetBlock module was parametrically refined. A Convolutional and Attention Fusion Module (CAFM) was used to replace the multi-head self-attention mechanism in the neck network to enhance the ability of the AIFI-CAFM module for capturing global dependencies and local detail information. The DRB-HSFPN feature pyramid network was designed to replace the Cross-Scale Feature Fusion Module (CCFM) to allow the integration of contextual information across different scales to improve the semantic feature expression capacity of the neck network. Finally, combining the advantages of Inner-IoU and EIoU, the Inner-EIoU was used to replace the original loss function GIOU to further enhance the model's inference accuracy and convergence speed.
RESULTS:
The experimental results on the HAM10000 dataset showed that the improved RT-DETR model, as compared with the original model, had increased mAP@50 and mAP@50:95 by 4.5% and 2.8%, respectively, with a detection speed of 59.1 frames per second (FPS). The improved model had a parameter count of 10.9 M and a computational load of 19.3 GFLOPs, which were reduced by 46.0% and 67.2% compared to those of the original model, validating the effectiveness of the improved model.
CONCLUSIONS
The proposed SD-DETR model significantly improves the performance of skin disease detection tasks by effectively extracting and integrating multi-scale features while reducing both parameter count and computational load.
Humans
;
Skin Diseases/diagnosis*
;
Skin/pathology*
;
Neural Networks, Computer
;
Algorithms
10.Skin organoid transplantation promotes tissue repair with scarless in frostbite.
Wenwen WANG ; Pu LIU ; Wendi ZHU ; Tianwei LI ; Ying WANG ; Yujie WANG ; Jun LI ; Jie MA ; Ling LENG
Protein & Cell 2025;16(4):240-259
Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells, and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC)-derived skin organoids combined with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5β1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.
Animals
;
Organoids/metabolism*
;
Mice
;
Humans
;
Wound Healing
;
Frostbite/metabolism*
;
Skin/pathology*
;
Induced Pluripotent Stem Cells/cytology*
;
Cicatrix/pathology*
;
Fibroblasts/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Extracellular Matrix/metabolism*
;
Male

Result Analysis
Print
Save
E-mail