1.Mortality and life loss due to coronary heart disease and stroke in Wujiang District of Suzhou in 2011 - 2022
Siyi GUN ; Rongyan ZHANG ; Jianxin SHEN ; Mei YANG ; Xiaochu PENG ; Jing TANG ; Mengxiang CHEN
Journal of Public Health and Preventive Medicine 2025;36(2):100-104
Objective To understand the mortality and potential life loss due to coronary heart disease (CHD) and stroke in Wujiang District, Suzhou from 2011 to 2022, and to provide strategies and basis for the prevention and treatment of CHD and stroke. Methods We collected the data of death cases due to CHD and stroke from the death monitoring system in Suzhou from 2011 to 2022. The mortality of CHD and stroke, potential years of life lost (potential years of life lost , PYLL), average years of life lost (average years of life lost , AYLL) and potential years of life lost rate (potential years of life lost rate , PYLLR) were calculated to analyze the development trend of death and disease burden of CHD and stroke. Results From 2011 to 2022, the crude mortality of CHD was 31.91/10 million, and that of stroke was 118.93/10 million. CHD and stroke mortality rates both showed an upward trend(P<0.05, a statistically significant trend). From 2011 to 2022, the mortality rate of CHD and stroke in Wujiang District increased rapidly with the increase of age. From 2011 to 2022, the disease burden caused by CHD totaled 11005 person-years, with PYLLR of 1.26% and AYLL of 12.34 years per person. The PYLL caused by stroke was 13 587.5 people-years, the PYLLR was 1.55%, and the AYLL was 8.93 years per person. PYLL, PYLLR and AYLL all decreased in women(P<0.05), with no significant change in men(P>0.05). Conclusion From 2011 to 2022, the mortality rate of CHD and stroke in Wujiang District appeared a tendency towards a rise, effective intervention and prevention measures should be taken among elderly and male residents.
2.Mechanism of Traditional Chinese Medicine Against Gouty Arthritis via Regulating Nrf2 Signaling Pathway: A Review
Siyi CHEN ; Shumin HUANG ; Yushan ZHAO ; Jiajin LIN ; Qian SHI ; Yefeng CHEN ; Yize ZHANG ; Zhongwen ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):323-330
Gouty arthritis (GA) is an inflammatory disorder caused by monosodium urate (MSU) crystal deposition, accompanied by elevated oxidative stress and aberrant release of inflammatory cytokines, resulting in joint tissue damage and intense pain. Nuclear factor E2-related factor 2 (Nrf2), a key transcription factor regulating the antioxidant defence system, exerts cytoprotective effects through dissociation from Kelch-like ECH-associated protein 1 (Keap1) and activates downstream antioxidant response element (ARE)-mediated pathways. It can upregulate the expression of heme oxygenase-1 (HO-1), NADH quinone oxidoreductase 1 (NQO1), superoxide dismutase (SOD), and glutathione transferase (GST) to preserve redox homeostasis. Moreover, Nrf2 can suppress activation of NOD-like receptor protein 3 (NLRP3) inflammasomes, reduce pro-inflammatory cytokine production and release, modulate nuclear factor-κB (NF-κB) transcriptional activity, regulate gut microbiota balance, enhance mitophagy, and inhibit apoptosis, so as to reduce joint inflammation and pain and promote body recovery. This review systematically examined recent advancements in traditional Chinese medicine (TCM) for GA prevention and treatment via regulating the Nrf2 signaling pathway. It delineated Nrf2's molecular mechanisms and its role in GA pathogenesis and elucidated how TCM intervenes in multiple pathways including Keap1/Nrf2/ARE, Nrf2/HO-1(NQO1), and Nrf2/NF-κB/NLRP3 to exert therapeutic effects. The study demonstrated that TCM monomers and compounds effectively counteract oxidative damage, attenuate inflammatory responses, promote autophagy, and inhibit apoptosis via regulating the Nrf2 signaling pathway. These findings not only clarify the scientific basis of TCM in GA treatment but also offer strategic insights for developing novel Nrf2-targeted anti-gout drugs.
3.Corrigendum: Comparative analysis of cancer statistics in China and the United States in 2024.
Yujie WU ; Siyi HE ; Mengdi CAO ; Yi TENG ; Qianru LI ; Nuopei TAN ; Jiachen WANG ; Tingting ZUO ; Tianyi LI ; Yuanjie ZHENG ; Changfa XIA ; Wanqing CHEN
Chinese Medical Journal 2025;138(10):1260-1260
4.GSTP1-mediated inhibition of ACSL4-dependent ferroptosis via JNK pathway in DOX-induced cardiomyopathy.
Mingbo WU ; Ye ZHAO ; Dong LI ; Xueli HU ; Jiaojiao ZHOU ; Siyi CHEN ; Xin YANG ; Zegang LI ; Xiaomiao RUAN ; Jingwen YANG ; Wenwu LING
Chinese Medical Journal 2025;138(19):2498-2510
BACKGROUND:
Doxorubicin hydrochloride (DOX) is extensively used in the treatment of various tumors. However, its clinical application is limited due to dose-dependent cardiotoxicity. Currently, few effective strategies exist to mitigate or eliminate DOX-induced cardiomyopathy (DIC). Although ferroptosis is implicated in DIC and its inhibition partially alleviates the condition, the direct targets of DOX in the progression of cardiotoxicity remain unclear. This study aimed to discover the direct targets of DOX in ferroptosis-mediated DIC.
METHODS:
A DOX pulldown assay was performed to identify proteins specifically binding to DOX in murine hearts, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify candidate proteins. A cardiac injury mouse model was established by DOX treatment. Based on this, multiple ferroptosis biomarkers were detected by flow cytometry, quantitative real-time polymerase chain reaction, western blotting, immunochemistry, etc. Besides, specific activator and inhibitor of signaling pathways were applied to illuminate molecular mechanisms.
RESULTS:
Glutathione S-transferase P1 (GSTP1) was identified as a DOX target. GSTP1 activity was inhibited in DOX-treated cardiomyocytes, while its overexpression significantly alleviated DIC. Moreover, GSTP1 overexpression inhibited acyl-CoA synthetase long-chain family member 4 (ACSL4)-dependent ferroptosis. Mechanistically, GSTP1 overexpression suppressed c-Jun N-terminal kinase (JNK) phosphorylation, thereby reducing reactive oxygen species (ROS) production and inhibiting ferroptosis in DIC.
CONCLUSIONS
This study identifies the DOX/GSTP1/JNK axis as a critical pathway mediating ACSL4-dependent ferroptosis in DIC. GSTP1 is highlighted as a potential key mediator of ferroptosis and a promising therapeutic target for DIC.
5.Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate aging in mice.
Sipeng WU ; Yiqi CAI ; Lixiao ZHANG ; Xiang LI ; Xu LIU ; Guangkeng ZHOU ; Hongdi LUO ; Renjian LI ; Yujia HUO ; Zhirong ZHANG ; Siyi CHEN ; Jinliang HUANG ; Jiahao SHI ; Shanwei DING ; Zhe SUN ; Zizhuo ZHOU ; Pengcheng WANG ; Geng WANG
Protein & Cell 2025;16(1):28-48
One of the basic questions in the aging field is whether there is a fundamental difference between the aging of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-aging Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at an early age was observed, indicating its involvement in normal aging of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal aging. adeno-associated virus delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan. These findings demonstrate the complexity of aging in mammals and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.
Animals
;
Mice
;
RNA, Untranslated/metabolism*
;
Aging/genetics*
;
Mice, Transgenic
;
Telomerase/metabolism*
;
RNA/genetics*
;
Hippocampus/metabolism*
;
Humans
;
Mice, Inbred C57BL
6.Analysisof HPV infection gene subtypes in the gynecology outpatient clinic of a hospital in Huadu district,Guangzhou
Siyi LI ; Hanbin HU ; Xueping LUO ; Weiwei HUANG ; Dongyun ZHU ; Xinyi CHEN
Modern Hospital 2024;24(5):803-805,809
Purpose To analyze the gene subtypes and characteristics of human papilloma virus(HPV)infection among women attending outpatient and physical examination centers at our hospital.Methods We utilized Polymerase Chain Reaction(PCR)combined with reverse dot hybridization to detect 28 HPV gene subtypes.Results HPV infection rate among the women was 24.15%.The five most prevalent high-risk(HR)and low-risk(LR)HPV gene subtypes were HPV 52,16,53,58,39,and HPV 61,81,54,42,44,respectively.Single and double infections accounted for 68.97%and 20.72%,with no signifi-cant difference found in the combination of multiple infection types.When stratified by age,the highest HPV infection rate was found among the group aged ≤25 years,followed by the group aged ≥66 years and then the group aged 56-65 years.This pattern of HPV infection rates across age groups revealed an approximate U-shaped curve.Conclusion The majority of female HPV in-fections in Huadu district are single infections,primarily affecting young and middle-aged women.HPV gene subtypes exhibit the characteristics of population or region-specific distribution.The overall infection rate of HPV is 24.15%,with the most common types being 52,16,and 53.The three peak age groups for HPV infection ranges are ≤25 years,56-65 years,and ≥66 years.
7.Global epidemiology of liver cancer 2022: An emphasis on geographic disparities
Qianru LI ; Chao DING ; Maomao CAO ; Fan YANG ; Xinxin YAN ; Siyi HE ; Mengdi CAO ; Shaoli ZHANG ; Yi TENG ; Nuopei TAN ; Jiachen WANG ; Changfa XIA ; Wanqing CHEN
Chinese Medical Journal 2024;137(19):2334-2342
Background::Liver cancer remains the sixth most commonly diagnosed cancer and the third leading cause of cancer-related deaths worldwide, causing a heavy burden globally. An updated assessment of the global epidemiology of the liver cancer burden that addresses geographical disparities is necessary to better understand and promote healthcare delivery.Methods::Data were extracted from the GLOBOCAN 2022 database, including the number, crude, and age-standardized rates of incidence and mortality at the global, country, continent, and human development index (HDI) regional levels. Age-standardized rates (incidence and mortality) per 100,000 person-years were adjusted based on the Segi-Doll World standard population. The mortality-to-incidence ratios (MIR) for each region and country were calculated. The HDI and gross national income (GNI) for 2022 were obtained, and a Pearson correlation analysis was conducted with the incidence, mortality, and MIR.Results::In 2022, approximately 866,136 new liver cancer cases and 758,725 related deaths were recorded worldwide, with a global MIR of 0.86. Males had a disproportionately higher burden than females across all levels, and the highest burden was observed in the elderly population. Geographically, the regions with the highest incidence rates included Micronesia, Eastern Asia, and Northern Africa, and the regions with the highest mortality rates included Northern Africa, Southeastern Asia, Eastern Asia, and Micronesia. Notably, Mongolia had a strikingly high burden compared to other countries. The highest MIR was observed in North America and the lowest in Africa. Negative associations of HDI and GNI with liver cancer mortality and MIR were identified, irrespective of sex.Conclusions::The current liver cancer burden underscores the presence of remarkable geographic heterogeneity, which is particularly evident across countries with varying HDI levels, highlighting the urgent need to prioritize health accessibility and availability to achieve health inequities.
8.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
9.Youguiwan Reduces Airway Inflammation in COPD Rats with Syndrome of Kidney-Yang Deficiency by Inhibiting Leptin/JAK2/STAT3 Signaling Pathway
Lan ZHENG ; Zeyuan LUO ; Min XIAO ; Xiaocui JIANG ; Yuhao MENG ; Siyi CHEN ; Jing ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):17-26
ObjectiveTo observe the effect of Youguiwan on the leptin/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the lung tissue of the rat model of chronic obstructive pulmonary disease (COPD) due to kidney-Yang deficiency. MethodForty rats were modeled for COPD with the syndrome of kidney-Yang deficiency by intratracheal instillation of lipopolysaccharide on day 1 and day 14 and continuous fumigation for 6 weeks, during which hydrocortisone was injected intramuscularly at an interval of 3 days. The modeled rats were randomized into model, high- (11.7 g·kg-1), medium- (5.85 g·kg-1), and low-dose (2.93 g·kg-1) Youguiwan, and aminophylline (0.054 g·kg-1) group. In addition, 8 SD rats were set as the blank group. After the completion of modeling, the rats in each group were administrated with the corresponding drug by gavage for 28 consecutive days. After the last administration, samples were collected. A lung function analyzer was used to evaluate the lung function of rats. Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin-17A (IL-17A), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the bronchoalveolar lavage fluid (BALF). Hematoxylin-eosin staining was employed to observe the pathological changes in the lung tissue, and Masson staining was employed to observe the deposition of blue collagen fibers around bronchi in the lung tissue and calculate the inflammation score. The immunofluorescence assay was employed to measure the protein content of collagen type Ⅰ (ColⅠ) and α-smooth muscle actin (α-SMA) in the bronchi. The protein and mRNA levels of leptin, IL-17A, JAK2, and STAT3 in the lung tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultCompared with the blank group, the model group showed decreased lung function (P<0.01), elevated levels of IL-6, IL-17A, and TNF-α in the BALF (P<0.01), and increased lung inflammation score, deposition of subcutaneous collagen fibers in the airway, and ColⅠ and α-SMA proteins (P<0.01). Furthermore, the modeling up-regulated the proteins and mRNA levels of leptin, IL-17A, JAK2, and STAT3 in the lung tissue (P<0.01) and enhanced the phosphorylation of JAK2 and STAT3 (P<0.01). Compared with the model group, high- and medium-dose Youguiwan improved the lung function, decreased the inflammation score, reduced collagen fiber deposition and ColⅠ and α-SMA proteins, lowered the levels of IL-6, IL-17A, and TNF-α in the BALF, down-regulated the mRNA and protein levels of leptin, JAK2, STAT3, and IL-17A, and weakened the phosphorylation of JAK2 and STAT3 (P<0.05, P<0.01). The aminophylline group had higher IL-17A and TNF-α levels than the high-dose Youguiwan group, lower IL-17A level than the medium and low-dose Youguiwan groups, and lower TNF-α level than the low-dose Youguiwan group. Compared with the aminophylline group, the high- and medium-dose Youguiwan groups showed reduced deposition of collagen fibers and protein levels of ColⅠ and α-SMA around the bronchi in the lung tissue (P<0.05, P<0.01), decreased inflammation score, and down-regulated protein and mRNA levels of leptin, JAK2, STAT3, and IL-17A in the lung tissue. ConclusionYouguiwan can prevent airway remodeling by inhibiting IL-17A to reduce inflammation and collagen deposition in COPD rats, which may be related to the inhibition of the leptin/JAK2/STAT3 signaling pathway.
10.Role and mechanism of intestinal flora metabolites in obesity regulation
Qihang YANG ; Rui PU ; Ziyang CHEN ; Siyi LENG ; Yongjing SONG ; Hui LIU ; Guangyou DU
Chinese Journal of Tissue Engineering Research 2024;28(2):308-314
BACKGROUND:Gut microbiota is closely related to host energy balance and metabolism.The metabolites of intestinal flora can regulate the occurrence and development of obesity and can be a new target for the prevention and treatment of obesity. OBJECTIVE:To summarize the interaction between the intestinal flora and obesity,as well as the specific mechanism underlying regulation of obesity by metabolites of intestinal flora,thereby providing a new reference and basis for the prevention and treatment of obesity. METHODS:"Intestinal microbiota,intestinal bacteria,intestinal microbiota metabolites,short-chain fatty acids,bile acids,ipopolysaccharide,trimethylamine N-oxide,medium-chain fatty acids,tryptophan derivatives,obesity"were used as search terms in Chinese and English.Literature related to obesity from 1990 to 2022 was retrieved in PubMed and CNKI databases.According to inclusion and exclusion criteria,88 articles were finally selected. RESULTS AND CONCLUSION:Intestinal flora is closely related to the occurrence and development of obesity.For example,changes in the Firmicutes to Bacteroidetes ratio can be used as a biomarker for the diagnosis of obesity,and the occurrence of obesity can be delayed by the colonization of probiotics such as Bifidobacterium breve,Lactobacillus and Akkermansia.Intestinal flora is mainly mediated by the metabolites of intestinal flora to participate in the regulation of obesity.For example,short-chain fatty acid can regulate adipogenesis by regulating signaling pathways such as G protein-coupled receptors 41,43 and peroxisome proliferator-activated receptor γ,thus delaying the occurrence and development of obesity.Bile acids can increase insulin sensitivity and body energy expenditure by promoting the activation of G protein-coupled receptor 5 and farnesol X receptor.In addition,lipopolysaccharide,trimethylamine oxide,medium-chain fatty acids and tryptophan derivatives are also widely involved in the occurrence and development of obesity through various signaling pathways.Further studies have found that metabolites of the same bacterial community exert heterogeneous effects in the specific process of regulating obesity via different signaling pathways.For example,under the influence of high-fat diet,acetic acids can activate the parasympathetic nervous system,leading to hyperphagia and liver insulin resistance and thus accelerating the physiological course of obesity.


Result Analysis
Print
Save
E-mail