1.Efficacy and safety of endoscopic retrograde cholangiopancreatography combined with oral cholangiopancreatography in the treatment of duodenal papilla cholecystectomy
Liying TAO ; Hongguang WANG ; Qingmei GUO ; Xiang GUO ; Lianyu PIAO ; Muyu YANG ; Yong YU ; Libin RUAN ; Jianbin GU ; Si CHEN ; Yingting DU ; Xiuying GAI ; Sijie GUO
Journal of Clinical Hepatology 2025;41(3):513-517
ObjectiveTo investigate the feasibility and safety of endoscopic retrograde cholangiopancreatography (ERCP) combined with oral cholangiopancreatography in the treatment of major duodenal papilla gallbladder polyps. MethodsA retrospective analysis was performed for the clinical data of eight patients with choledocholithiasis and gallbladder polyps who underwent ERCP and combined with oral cholangiopancreatography for major duodenal papilla cholecystectomy in Center of Digestive Endoscopy, Jilin People’s Hospital, from May 2022 to June 2024, and related data were collected, including the success rate of surgery, the technical success rate of gallbladder polyp removal, the superselective method of cystic duct, the time of operation, the time of gallbladder polyp removal, and surgical complications. ResultsBoth the success rate of surgery and the technical success rate of gallbladder polyp removal reached 100%, and of all eight patients, three patients used guide wire to enter the gallbladder under direct view, while five patients received oral cholangiopancreatography to directly enter the gallbladder. The time of operation was 51.88±12.34 minutes, and the time of gallbladder polyp removal was 23.13±10.94 minutes. The diameter of gallbladder polyp was 2 — 8 mm, and pathological examination showed inflammatory polyps in three patients, adenomatous polyps in one patient, and cholesterol polyps in four patients. There were no complications during or after surgery. The patients were followed up for 2 — 27 months after surgery, and no recurrence of gallbladder polyp was observed. ConclusionOral cholangiopancreatography is technically safe and feasible in endoscopic major duodenal papilla cholecystectomy.
2.Role of sphingolipid metabolism signaling in a novel mouse model of renal osteodystrophy based on transcriptomic approach.
Yujia WANG ; Yan DI ; Yongqi LI ; Jing LU ; Bofan JI ; Yuxia ZHANG ; Zhiqing CHEN ; Sijie CHEN ; Bicheng LIU ; Rining TANG
Chinese Medical Journal 2025;138(1):68-78
BACKGROUND:
Renal osteodystrophy (ROD) is a skeletal pathology associated with chronic kidney disease-mineral and bone disorder (CKD-MBD) that is characterized by aberrant bone mineralization and remodeling. ROD increases the risk of fracture and mortality in CKD patients. The underlying mechanisms of ROD remain elusive, partially due to the absence of an appropriate animal model. To address this gap, we established a stable mouse model of ROD using an optimized adenine-enriched diet and conducted exploratory analyses through ribonucleic acid sequencing (RNA-seq).
METHODS:
Eight-week-old male C57BL/6J mice were randomly allocated into three groups: control group ( n = 5), adenine and high-phosphate (HP) diet group ( n = 20), and the optimized adenine-containing diet group ( n = 20) for 12 weeks. We assessed the skeletal characteristics of model mice through blood biochemistry, microcomputed tomography (micro-CT), and bone histomorphometry. RNA-seq was utilized to profile gene expression changes of ROD. We elucidated the functions of differentially expressed genes (DEGs) using gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). DEGs were validated via quantitative real-time polymerase chain reaction (qRT-PCR).
RESULTS:
By the fifth week, adenine followed by an HP diet induced rapid weight loss and high mortality rates in the mouse group, precluding further model development. Mice with optimized adenine diet-induced ROD displayed significant abnormalities in serum creatinine and blood urea nitrogen levels, accompanied by pronounced hyperparathyroidism and hyperphosphatemia. The femur bone mineral density (BMD) of the model mice was lower than that of control mice, with substantial bone loss and cortical porosity. ROD mice exhibited substantial bone turnover with an increase in osteoblast and osteoclast markers. Transcriptomic profiling revealed 1907 genes with upregulated expression and 723 genes with downregulated expression in the femurs of ROD mice relative to those of control mice. Pathway analyses indicated significant enrichment of upregulated genes in the sphingolipid metabolism pathway. The significant upregulation of alkaline ceramidase 1 ( Acer1 ), alkaline ceramidase 2 ( Acer2 ), prosaposin-like 1 ( Psapl1 ), adenosine A1 receptor ( Adora1 ), and sphingosine-1-phosphate receptor 5 ( S1pr5 ) were successfully validated in mouse femurs by qRT-PCR.
CONCLUSIONS
Optimized adenine diet mouse model may be a valuable proxy for studying ROD. RNA-seq analysis revealed that the sphingolipid metabolism pathway is likely a key player in ROD pathogenesis, thereby providing new avenues for therapeutic intervention.
Animals
;
Mice
;
Chronic Kidney Disease-Mineral and Bone Disorder/genetics*
;
Male
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Sphingolipids/metabolism*
;
Transcriptome/genetics*
;
Signal Transduction/genetics*
;
X-Ray Microtomography
;
Adenine
3.CDK5-triggered G6PD phosphorylation at threonine 91 facilitating redox homeostasis reveals a vulnerability in breast cancer.
Yuncheng BEI ; Sijie WANG ; Rui WANG ; Owais AHMAD ; Meng JIA ; Pengju YAO ; Jianguo JI ; Pingping SHEN
Acta Pharmaceutica Sinica B 2025;15(3):1608-1625
Glucose-6-phosphate dehydrogenase (G6PD), the first rate-limiting enzyme of the pentose phosphate pathway (PPP), is aberrantly activated in multiple types of human cancers, governing the progression of tumor cells as well as the efficacy of anticancer therapy. Here, we discovered that cyclin-dependent kinase 5 (CDK5) rewired glucose metabolism from glycolysis to PPP in breast cancer (BC) cells by activating G6PD to keep intracellular redox homeostasis under oxidative stress. Mechanistically, CDK5-phosphorylated G6PD at Thr-91 facilitated the assembly of inactive monomers of G6PD into active dimers. More importantly, CDK5-induced pho-G6PD was explicitly observed specifically in tumor tissues in human BC specimens. Pharmacological inhibition of CDK5 remarkably abrogated G6PD phosphorylation, attenuated tumor growth and metastasis, and synergistically sensitized BC cells to poly-ADP-ribose polymerase (PARP) inhibitor Olaparib, in xenograft mouse models. Collectively, our results establish the crucial role of CDK5-mediated phosphorylation of G6PD in BC growth and metastasis and provide a therapeutic regimen for BC treatment.
4.Prrx1 promotes mesangial cell proliferation and kidney fibrosis through YAP in diabetic nephropathy.
Liu XU ; Jiasen SHI ; Huan LI ; Yunfei LIU ; Jingyi WANG ; Xizhi LI ; Dongxue REN ; Sijie LIU ; Heng WANG ; Yinfei LU ; Jinfang SONG ; Lei DU ; Qian LU ; Xiaoxing YIN
Journal of Pharmaceutical Analysis 2025;15(10):101247-101247
Mesangial cell proliferation is an early pathological indicator of diabetic nephropathy (DN). Growing evidence highlights the pivotal role of paired-related homeobox 1 (Prrx1), a key regulator of cellular proliferation and tissue differentiation, in various disease pathogenesis. Notably, Prrx1 is highly expressed in mesangial cells under DN conditions. Both in vitro and in vivo studies have demonstrated that Prrx1 overexpression promotes mesangial cell proliferation and contributes to renal fibrosis in db/m mice. Conversely, Prrx1 knockdown markedly suppresses hyperglycemia-induced mesangial cell proliferation and mitigates renal fibrosis in db/db mice. Mechanistically, Prrx1 directly interacts with the Yes-associated protein 1 (YAP) promoter, leading to the upregulation of YAP expression. This upregulation promotes mesangial cell proliferation and exacerbates renal fibrosis. These findings emphasize the crucial role of Prrx1 upregulation in high glucose-induced mesangial cell proliferation, ultimately leading to renal fibrosis in DN. Therefore, targeting Prrx1 to downregulate its expression presents a promising therapeutic strategy for treating renal fibrosis associated with DN.
5.Individual and interactive effects of atmospheric PM2.5 and O3 on mortality of circulatory system diseases in Ningxia
Dongshuai WANG ; Xuehao DONG ; Jinxia WANG ; Yunhao SHI ; Hanqing ZHANG ; Sijie ZHOU ; Yajuan ZHANG
Journal of Environmental and Occupational Medicine 2024;41(1):25-33
Background The impact of atmospheric fine particulate matter (PM2.5) and ozone (O3) on the mortality of circulatory system diseases cannot be ignored. However, whether the interaction between PM2.5 and O3 can affect population health is rarely reported and requires study. Objective To investigate the individual and interactive impacts of atmospheric PM2.5 and O3 on the mortality of circulatory system diseases in the population of Ningxia region. Methods The data of 119647 deaths due to circulatory system diseases, daily average concentrations of atmospheric pollutants, and meteorological data in Ningxia from 2013 to 2020 were retrieved. PM2.5 was divided into low, medium, and high concentrations according to the primary and secondary national limits (35 and 75 μg·m−3) of the Ambient air quality standards. Similarly, O3 was divided into low, medium, and high concentrations according to the national limits (100 and 160 μg·m−3). Using a generalized additive mixed model based on quasi Poisson distribution, the impacts of atmospheric PM2.5 and O3 as well as their interaction on the mortality of circulatory system diseases were analyzed using the population data of Ningxia region. Results During the target period, males and the ≥ 65 year group accounted for larger proportions of deaths due to circulatory system diseases (55.47% and 79.87% respectively). The daily average concentration of PM2.5 (40.25 μg·m−3) exceeded the national primary limit. In the single pollution model, the highest cumulative lag effects for mortality from circulatory system diseases were PM2.5 exposure over previous 1 d (lag01) and O3 exposure for previous 2 d (lag02), and their excess risk (ER) values were 1.03% (95%CI: 0.67%, 1.40%) and 1.02% (95%CI: 0.57%, 1.50%), respectively. The results of concentration stratification analysis showed that the most significant risks of death from circulatory system diseases [ER (95%CI): 1.12% (0.32%, 1.92%) and 0.95% (0.13%, 1.79%) respectively] were found at medium PM2.5 and O3 concentrations. The interaction analysis revealed that under, a synergistic effect on the risk of death from circulatory system diseases was identified (relative excess risk due to interaction=3.08%, attributable proportion of interaction=2.90%, synergy index=1.89) when considering the coexistence of PM2.5 and O3 above the primary limit. As the concentrations of PM2.5 and O3 increased, the synergistic effect increased the risk of death from circulatory system diseases in the general population, men, women, and the ≥ 65 years group. Conclusion Both atmospheric PM2.5 and O3 can increase the risk of death from circulatory system diseases, and the two pollutants have a synergistic effect on the risk of death from circulatory system diseases.
6.Effects of long-term exposure to ambient fine particulate matter on diabetes mellitus and the moderating effects of diet
Jinxia WANG ; Yunhao SHI ; Dongshuai WANG ; Xuehao DONG ; Hanqing ZHANG ; Sijie ZHOU ; Yi ZHAO ; Yuhong ZHANG ; Yajuan ZHANG
Journal of Environmental and Occupational Medicine 2024;41(3):259-266
Background Long-term exposure to ambient fine particulate matter (PM2.5) may increase the risk of diabetes, and a healthy diet can effectively control fasting blood glucose levels. However, it is unclear whether dietary factors have a moderating effect on the risk of diabetes associated with atmospheric PM2.5 exposure. Objective To investigate the association between long-term exposure to PM2.5 and diabetes in rural areas of Ningxia, and potential interaction of long-term exposure to atmospheric PM2.5 and diet on diabetes. Methods The study subjects were selected from the baseline survey data of the China Northwest Cohort-Ningxia (CNC-NX) , a natural population cohort. A total of 13917 subjects were included, excluding participants with missing covariate information. We utilized the annual average ambient PM2.5 concentration from 2014 to 2018 as the long-term exposure level. Logistic regression and multiple linear regression were employed to analyze the associations of long-term atmospheric PM2.5 exposure with diabetes and fasting blood glucose levels. Stratification by frequency of vegetable consumption, frequency of fruit consumption, and salty taste was used to examine moderating effects on the diabetes risk associated with atmospheric PM2.5 exposure. Results The mean age of the 13917 subjects was (56.8±10.0) years, and the prevalence of diabetes was 9.8%. Between 2014 and 2018, the average annual concentration of PM2.5 was (38.10±4.67) μg·m−3. The risk (OR) of diabetes was 1.018 (95%CI: 1.005, 1.032) and the fasting blood glucose was increased by 0.011 (95%CI: 0.004, 0.017) mmol·L−1 for each 1 μg·m−3 increase in PM2.5 concentration. Compared to those who consumed vegetables < 1 time per week, individuals who consume vegetables 1-3 times per week and ≥4 times per week had a reduced risk of developing diabetes by 27.1% (OR=0.729, 95%CI: 0.594, 0.893) and 16.8% (OR=0.832, 95%CI: 0.715, 0.971) respectively. Similarly, when compared to those who consumed fruits <1 time per week, individuals who consumed fruits 1-3 times per week and ≥4 times per week exhibited a reduced risk of diabetes by 16.4% (OR=0.836, 95%CI: 0.702, 0.998) and 18.2% (OR=0.818, 95%CI: 0.700, 0.959) respectively. Fasting blood glucose decreased by 0.202 (95%CI: -0.304, -0.101) mmol·L−1 in participants who ate vegetables 1-3 times per week. The effect of salty taste on diabetes and fasting blood glucose was not significant. The results of stratified analysis by dietary factors and PM2.5 concentration showed that the risks of diabetes were increased in the low PM2.5 pollution-low vegetable intake frequency group and the high PM2.5 pollution-low vegetable intake frequency group compared with the low PM2.5 pollution-high vegetable intake frequency group, with OR values of 3.987 (95%CI: 2.943, 5.371) and 1.433 (95%CI: 1.143, 1.796) respectively. The risk of diabetes was 50.1% higher in participants with high PM2.5 pollution and low fruit intake frequency than in participants with low PM2.5 pollution and high fruit intake frequency (OR=1.501, 95%CI: 1.171, 1.926). No interaction was found between salty taste and PM2.5 on diabetes. Conclusion Long-term exposure to ambient PM2.5 is associated with an increased fasting blood glucose and an elevated risk of diabetes in rural Ningxia population. Increasing the frequency of weekly consumption of vegetables or fruits may have a certain protective effect against diabetes occurrence, as well as a moderating effect on diabetes and fasting blood glucose levels associated with long-term exposure to atmospheric PM2.5.
7.Influence of functional ankle instability on balance and lower limb explosive power
Changhong ZHUANG ; Yufeng WANG ; Sijie HE ; Tao JIANG ; Jintao YE ; Tianfeng ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2024;30(9):1107-1116
Objective To observe the influence of functional ankle instability(FAI)on balance and lower limb explosive power. Methods A total of 26 male FAI participants,13 bilateral(bilateral group)and 13 left(left group),who regularly en-gaged in high-intensity exercise,were recruited at Harbin Sport University in May,2024.Meanwhile,13 unin-jured male participants who engaged in high-intensity exercise were recruited as control group.They were mea-sured the moving area of the left foot,right foot and body center of gravity standing on feet with the eyes opened and closed;as well as the sway angle,confidence ellipse diameter(maximum and minimum)to circle area ratio,sway ratio and confidence ellipse standing on single foot,with Gaitview plantar pressure analysis system.They were also tested with Y-balance test(YBT),and were measured flight time and center of gravity height during jumps single leg left/right drift,stiffness and counter movement jump using Opto-jump Optical Measurement of Motor Quality. Results There were significant differences among the groups in swing angle,confidence ellipse diameter(maximum and minimum)to circle area ratio,swing ratio and confidence ellipse as left-leg stance with eyes closed(F>3.300,P<0.05),which was the least in the control group(P<0.05).Swing angle,swing ratio and confidence ellipse were also different among the groups as right-leg stance with eyes closed(F>4.404,P<0.05),and they were less in the control group than in the bilateral group(P<0.05),and less in the left group than in the bilateral group(P<0.05),except swing angle.There was a significant difference in YBT results(F>3.649,P<0.05),which was the least in the bilateral group(P<0.05).There were significant differences in the flight time and center of gravity height during counter movement jump(F>7.458,P<0.01),which was the least in the bilateral group(P<0.05). Conclusion FAI may impair the static balance as single-leg stance with eyes closed,dynamic balance and lower limb ex-plosive power.
8.Differences in exosome miRNAs in human breast milk between preterm and full-term infants
Yinfei WANG ; Qin YIN ; Sijie ZENG ; Lei SUN ; Qinhui YAN ; Xiaojing SHENG
Chinese Journal of Child Health Care 2024;32(4):377-383
【Objective】 To evaluate the differential miRNA expression of breast milk exosome in premature and full-term groups, and to analyze the regulatory pathways by bioinformatics, so as to provide guidance and scientific basis for the growth and development of premature infants and the prevention and treatment of related diseases. 【Methods】 From August 2020 to June 2021, breast milk samples from 13 premature (premate group) and 9 full-term infants(full-term group) in the Department of Child Health Care of the Second Affiliated Hospital of Nanjing Medical University were collected to extract exosomes. The miRNAs of two groups of breast milk exosomes were sequenced by high-throughput sequencing. According to the sequencing results, miRNA expression profiles of milk exosome were analyzed. Biological function software was used to carry out GO and KEGG pathway analysis of differential miRNA. 【Results】 The expression of miRNA in human milk exosomes was rich, especially hsa-miR-148a-3p,hsa-let-7b-5p, hsa-let-7g-5p, hsa-miR-22-3p, hsa-miR-99a-5p, hsa-miR-200, hsa-miR-146b-5p and hsa-miR-26a-5p were relatively high expressed in preterm group and full-term group. Differential expression analysis showed that compared with full-term infant breast milk, 7 miRNAs were up-regulated(log
9.Effects of whole-body vibration combined with squat-up synchronization training on walking function of stroke patients based on superposition effect
Dongyan XU ; Weining WANG ; Sijie LIANG
Chinese Journal of Rehabilitation Medicine 2024;39(2):178-184
Objective:To explore the synchronization effect of whole-body vibration therapy combined with squat-up train-ing on ambulation of patients with stroke. Method:40 stroke survivors who could walk independently with supervision or assistive devices,were recruit-ed from the Department of Rehabilitation Medicine,Huashan Hospital Affiliated to Fudan University(Pudong Cam-pus)and were randomly divided into the WBVT group and the control group.Both groups received conven-tional rehabilitation treatment for 40 minutes per day.The WBVT group was given additional whole-body vibra-tion therapy while squat-up training for another 20 minutes a day.The control group added sham stimulation of standing on the vibration platform with no vibration for the same amount of time per day.At the begin-ning of enrollment and after 4 weeks intervention,participants received two times evaluation by the wearable three-dimensional gait assessment instrument for the function of walking,and the electromyographic signals of the rectus femoris and long head of the biceps femoris were collected by surface electromyography instrument and statistical analysis on the data before and after the intervention. Result:After 4 weeks intervention,the stride speed and stride length of both groups improved siginificanlty(P<0.05),while the WBVT group was better than the control group(P<0.05).The swing angle of knee(flex-ion or extention)in the WBVT group improved significantly after intervention compared with the control group.At the single leg support phase(SS)of affected side,the differences were found in the synergistic contraction rate of the rectus femoris and biceps femoris in the bilateral lower extremity of the WBVT group after the in-tervention(P<0.05).At the swing phase(SW)of affected side,the differences were found in the synergistic contraction rate of the rectus femoris and biceps femoris in the bilateral lower extremity between the two groups before and after the intervention(P<0.05),but the affected side of the WBVT group was better than that the control group after intervention(P<0.05). Conclusion:Whole-body vibration therapy combined with rhythmic squat-up synchronous training can improve the stride speed,stride length and synergistic contraction rate of lower limb muscles for better ambulation of patients with stroke.
10.Research progress on labial protuberances of anterior teeth in orthodontic treatment
Dingwen LUO ; Sijie WANG ; Lu GAO ; Xiaoyan CHEN
Journal of Zhejiang University. Medical sciences 2024;53(5):586-592
During orthodontic treatment,irregular and varying sized nodular bony protrusions may sometimes appear on the labial side of the patient's anterior alveolar bone,which is closely related to the differential bone remodeling on the inner and outer surfaces of the alveolar bone.Labial protuberances not only affect the aesthetic results of orthodontic treatment,but also pose potential risks to periodontal health.Currently,it is believed that the influencing factors of the formation of the labial protuberances may be related to the patient's gender and age,tooth movement speed,and extent of anterior teeth retraction.Labial protuberances typically resolve spontaneously,however,if persistent,alveoloplasty may be necessary for treatment.This review provides a summary on the occurrence,influencing factors of formation,potential biological mechanisms,and corresponding treatment methods of labial protuberances during orthodontic treatment.

Result Analysis
Print
Save
E-mail