1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Mechanism of Mitochondrial Autophagy and Intervention of Traditional Chinese Medicine in Renal Fibrosis: A Review
Shuqi MIN ; Chenghua ZHANG ; Qiwang HE ; Xinyue ZHANG ; Zhiyi LI ; Meifeng ZHU ; Shenju WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):314-321
With the main pathological features of glomerulosclerosis and interstitial fibrosis, renal fibrosis is a key pathological process causing chronic kidney disease to progress to end-stage disease. As a cellular autophagic process, mitochondrial autophagy plays a crucial role in maintaining mitochondrial mass and functional stability. Mitochondrial dysfunction is considered to be one of the key factors driving the progression of fibrosis. Phosphatase and tension protein homologue (PTEN) induce various signalling pathways such as putative kinase 1/parkin, Nip3-like protein X/Bcl-2 interacting protein 3, and FUN14 structural domain-containing protein 1 to activate mitochondrial autophagy to participate in the regulation of fibrogenic factors, amelioration of oxidative stress, and inhibition of inflammatory response and apoptosis, which in turn effectively slows down the progression of renal fibrosis. Studies have shown that traditional Chinese medicine monomers and compound preparations, including phenolics, terpenoids, ketones, and alkaloids, can regulate mitochondrial autophagy-related signalling pathways and achieve significant clinical efficacy in intervening in the progression of renal fibrosis for the treatment of chronic kidney disease. This paper summarized the mechanism of mitochondrial autophagy and the research progress of traditional Chinese medicine intervention in renal fibrosis to provide new ideas for the study of the mechanism of traditional Chinese medicine in treating renal fibrosis.
4.Mechanism of Mitochondrial Autophagy and Intervention of Traditional Chinese Medicine in Renal Fibrosis: A Review
Shuqi MIN ; Chenghua ZHANG ; Qiwang HE ; Xinyue ZHANG ; Zhiyi LI ; Meifeng ZHU ; Shenju WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):314-321
With the main pathological features of glomerulosclerosis and interstitial fibrosis, renal fibrosis is a key pathological process causing chronic kidney disease to progress to end-stage disease. As a cellular autophagic process, mitochondrial autophagy plays a crucial role in maintaining mitochondrial mass and functional stability. Mitochondrial dysfunction is considered to be one of the key factors driving the progression of fibrosis. Phosphatase and tension protein homologue (PTEN) induce various signalling pathways such as putative kinase 1/parkin, Nip3-like protein X/Bcl-2 interacting protein 3, and FUN14 structural domain-containing protein 1 to activate mitochondrial autophagy to participate in the regulation of fibrogenic factors, amelioration of oxidative stress, and inhibition of inflammatory response and apoptosis, which in turn effectively slows down the progression of renal fibrosis. Studies have shown that traditional Chinese medicine monomers and compound preparations, including phenolics, terpenoids, ketones, and alkaloids, can regulate mitochondrial autophagy-related signalling pathways and achieve significant clinical efficacy in intervening in the progression of renal fibrosis for the treatment of chronic kidney disease. This paper summarized the mechanism of mitochondrial autophagy and the research progress of traditional Chinese medicine intervention in renal fibrosis to provide new ideas for the study of the mechanism of traditional Chinese medicine in treating renal fibrosis.
5.Expenditure trends and intergenerational substitution relationships of national negotiated drugs for non-small cell lung cancer in China
Shuqi ZONG ; Wei LI ; Yuxin XIAO ; Hao RUN
China Pharmacy 2025;36(16):1968-1974
OBJECTIVE To analyze the impact of intergenerational substitution effect of the drugs with the same indication on fund expenditures for national medical insurance for this indication in China, taking national medical insurance negotiated drugs for non-small cell lung cancer (hereinafter referred to as “NSCLC national negotiation drugs”) as an example. METHODS The sales amounts of 15 types of NSCLC national negotiated drugs in secondary and tertiary public hospitals across seven sample provinces from 2017 to 2023 were collected from the Pharmaceutical Drug Database of the China National Pharmaceutical Industry Information Center. A sliding t-test and Mann-Kendall trend test were used to evaluate the trends in sales amounts and DDDs. Taking epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitors (TKIs) and anaplastic lymphoma kinase (ALK)-TKIs as examples, the generational substitution characteristics of these drugs were analyzed. RESULTS The change points of sales amounts and DDDs differed slightly across provinces; the change points of sales amount were mostly concentrated between the first quarter of 2019 and the second quarter of 2020, while those for DDDs were primarily concentrated in the first to second quarters of 2021. In five provinces, i.e. Beijing, Heilongjiang, Jiangsu, Sichuan and Shaanxi, sales amounts showed no significant upward trend after the breakpoints (P>0.05), whereas in Guangdong and Hubei, both sales amounts and DDDs continued to rise significantly following the breakpoints (P<0.05). Since 2020, the growth in sales amounts of EGFR-TKIs had slowed. After 2021, the sales amounts and DDDs of first- and second-generation EGFR-TKIs declined, while third-generation EGFR-TKIs showed clear substitution effects. The sales amounts of ALK-TKIs continuedto grow. However, the sales amounts and DDDs of first-generation ALK-TKIs had declined year by year, with second-generation ALK-TKIs demonstrating a significant substitution effect on first-generation ones, while third-generation ALK-TKIs had not yet shown a clear substitution trend. CONCLUSIONS With the annual access to and renewal of drugs in national medical insurance negotiations, the overall expenditure trend for NSCLC negotiated drugs comes to a plateau. The intergenerational substitution relationships of drugs with the same indication achieve a relative balance in fund expenditures for negotiated drugs with the same indication. It is recommended that pharmaceutical companies carefully consider their research pipelines, and that medical insurance authorities, during the renewal management process, pay attention to the impact of drug substitution effects on the overall actual expenditure of medical insurance funds for that specific target or the same indication, and scientifically evaluate the extent of price reductions during contract renewals.
6.Comprehensive Analysis of the Expression, Prognosis and Function of TRAF Family Proteins in NSCLC.
Yixuan WANG ; Qiang CHEN ; Yaguang FAN ; Shuqi TU ; Yang ZHANG ; Xiuwen ZHANG ; Hongli PAN ; Xuexia ZHOU ; Xuebing LI
Chinese Journal of Lung Cancer 2025;28(3):183-194
BACKGROUND:
Currently, lung cancer is one of the malignant tumors with a high morbidity and mortality all over the world. However, the exact mechanisms underlying lung cancer progression remain unclear. The tumor necrosis factor receptor associated factor (TRAF) family members are cytoplasmic adaptor proteins, which function as both adaptor proteins and ubiquitin ligases to regulate diverse receptor signalings, leading to the activation of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling. The aim of this study was to investigate the expression of TRAFs in different tissues and cancer types, as well as its mRNA expression, protein expression, prognostic significance and functional enrichment analysis in non-small cell lung cancer (NSCLC), in order to provide new strategies for the diagnosis and treatment of NSCLC.
METHODS:
RNA sequencing data from the The Genotype-Tissue Expression database was used to analyze the expression patterns of TRAF family members in different human tissues. RNA sequencing data from the Cancer Cell Line Encyclopedia database was used to analyze the expression patterns of TRAF family members in different types of cancer cell lines. RNA sequencing data from the The Cancer Genome Atlas (TCGA) database was used to analyze the mRNA levels of TRAF family members across different types of human cancers. Immunohistochemistry (IHC) analyses from HPA database were used to analyze the TRAF protein levels in NSCLC [lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC)]. Overall survival analysis was performed by Log-rank test using original data from Kaplan-Meier Plotter database to evaluate the correlation between TRAF expressions and prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on the TRAF family-related genes using RNA sequencing data from the TCGA database for NSCLC. The correlation between the expression levels of TRAF family members and the tumor immune microenvironment was analyzed using the ESTIMATE algorithm based on RNA sequencing data from the TCGA database.
RESULTS:
The TRAF family members exhibited significant tissue-specific expression heterogeneity. TRAF2, TRAF3, TRAF6 and TRAF7 were widely expressed in most tissues, while the expressions of TRAF1, TRAF4 and TRAF5 were restricted to specific tissues. The expressions of TRAF family members were highly specific among different types of cancer cell lines. In mRNA database of LUAD and LUSC, the expressions of TRAF2, TRAF4, TRAF5 and TRAF7 were significantly upregulated; while TRAF6 did the opposite; moveover, TRAF1 and TRAF3 only displayed a significant upregulation in LUAD and LUSC, respectively. Except for TRAF3, TRAF4 and TRAF7, other TRAF proteins displayed an obviously deeper IHC staining in LUAD and LUSC tissues compared with normal tissues. Additionally, patients with higher expression levels of TRAF2, TRAF4 and TRAF7 had shorter overall survival; while patients with higher expression levels of TRAF3, TRAF5 and TRAF6 had significantly longer overall survival; however, no significant difference had been observed between TRAF1 expression and the overall survival. TRAF family members differentially regulated multiple pathways, including NF-κB, immune response, cell adhesion and RNA splicing. The expression levels of TRAF family members were closely associated with immune cell infiltration and stromal cell content in the tumor immune microenvironment, with varying positive and negative correlations among different members.
CONCLUSIONS
TRAF family members exhibit highly specific expression differences across different tissues and cancer types. Most TRAF proteins exhibit upregulation at both mRNA and protein levels in NSCLC, whereas, only upregulated expressions of TRAF2, TRAF4 and TRAF7 predict worse prognosis. The TRAF family members regulate processes such as inflammation, immunity, adhesion and splicing, and influence the tumor immune microenvironment.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/mortality*
;
Prognosis
;
Gene Expression Regulation, Neoplastic
;
Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism*
7.A retrospective analysis of the clinical characteristics of 63 patients with vestibular neuritis.
Qi WANG ; Gendi YIN ; Shuqi ZHANG ; Qiling HUANG ; Lingwei LI ; Zhicheng LI ; Xiangli ZENG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):19-23
Objective:To retrospectively analyze the results of auditory examination,vestibular function examination and laboratory examination of 63 patients diagnosed as vestibular neuritis.Methods:A total of 63 patients diagnosed with vestibular neuritis hospitalized in the Department of Otolaryngology, Head and Neck Surgery of the Third Affiliated Hospital of Sun Yat-sen University, from October 2012 to December 2022 were recruited. All patients met the diagnostic criteria for the 2022 Bárány association vestibular neuritis. Clinical data and the results of pure tone audiometry, electrocochleogram, video electronystagmogram, caloric test, cervical vestibuloevoked myogenic potential(cVEMP), ocular vestibuloevoked myogenic potential(oVEMP), video head impulse test(vHIT) was collected.A total of 63 age-and sex-matched healthy subjects in the physical examination center were randomly selected as the control group. The differences of blood indexs and lipid metabolism indexes between the two groups were compared. Results:In patients with vestibular neuritis, 50 out of 63 patients presented normal threshold in pure tone audiometry, 8 out of 63 patients had bilateral high-frequency sensorineural hearing loss and 5 out of 63 patients had unilateral mild high-frequency sensorineural hearing loss, 56 out of 63 cases completed the electrocochleogram, of which 3 cases had a binaural-SP/AP amplitude ratio≥0.4, 5 cases had monaural amplitude ratio ≥0.4. Fifty-five out of 63 patients completed the caloric test with CP values greater than 30% in all. The ratio of patients completed cVEMP, oVEMP and vHIT were 46 cases, 22 cases and 30 cases, respectively. 17 out of 63 cases completed all the four vestibular function tests. According to these tests, 49 patients could determine the extent of injury,including 27 cases with unilateral superior vestibular nerve injury, 21 cases with unilateral superior and inferior vestibular nerve injury and 1 case with unilateral inferior vestibular nerve injury. There were significant differences in neutrophil value(P<0.001), lymphocyte value(P<0.005), neutrophil/lymphocyte ratio(P<0.001) and apolipoprotein A1(P<0.001) between patient group and control group. Inflammatory markers were risk factors for patients with vestibular neuritis. The OR values of neutrophil value and blood neutrophil/lymphocyte ratio were 1.81(1.38-2.37, P<0.001) and 2.11(1.41-3.16, P<0.001), respectively. Apolipoprotein A1 was a protective factor for patients with vestibular neuritis, and the OR value was 0.004(0.001-0.042, P<0.001). Conclusion:Electrocochleogram could be used in vestibular neuritis patients with normal pure tone threshold to test whether there is hidden hearing loss in these patients. Neutrophil value, lymphocyte value, neutrophil/lymphocyte ratio and apolipoprotein A1 were correlated with vestibular neuritis. The Neutrophil value and neutrophil/lymphocyte ratio were risk factors for morbidity.
Humans
;
Vestibular Neuronitis/physiopathology*
;
Retrospective Studies
;
Female
;
Male
;
Audiometry, Pure-Tone
;
Hearing Loss, Sensorineural/physiopathology*
;
Middle Aged
;
Adult
;
Vestibular Function Tests
;
Vestibular Evoked Myogenic Potentials
;
Aged
8.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
9.HUVEC-Based OGD/R Injury Model to Study the Effect of Danggui-Chuanxiong Herb Pair Medicine on the Main Pharmacological Components on VEGF-PI3K-AKT/NF-κB Signaling Pathway
Qiuru JI ; Wenjuan NI ; Xiaoyan WANG ; Shuqi ZHANG ; Yali WU ; Lu NIU ; Kun LI ; Weixia LI ; Jinfa TANG
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(3):691-703
Objective To study the effects of Danggui-Chuanxiong herb pair medicine on vasoactive substances,adhesion factors,inflammatory factors,and VEGF-PI3K-AKT/NF-κB signaling pathways,in order to elucidate the mechanism of Danggui-Chuanxiong herb pair on the treatment of ischemic stroke(IS).Methods The oxygen glucose deprivation/reoxygenation(OGD/R)model of human umbilical vein endothelial cells(HUVEC)was constructed,and the cell viability was detected by cell proliferation kit(CCK-8 method)to explore the optimal modeling time of seven components;The release of lactate dehydrogenase(LDH)was detected by cytotoxicity kit;The expression of related cytokines was detected by enzyme-linked immunosorbent assay(ELISA);The mRNA expression of key proteins in the signaling pathway was detected by reverse transcription-polymerase chain reaction(RT-PCR).Results Reoxygenation after 6 h of oxygen-glucose deprivation of HUVEC is the best modeling time.High-dose chlorogenic acid group,ferulic acid group,senkyunolide H,low-dose and medium-dose butylidenephthalide group,medium-dose and high-dose senkyunolide A and ligustilide groups significantly decreased LDH leakage rate(P<0.05,P<0.01);The expression of IL-6 in the cells of the partial dose group of chlorogenic acid,caffeic acid,butenylphthalide,senkyunolide H and senkyunolide A was significantly increased,the expression of IL-1 in the cells of the partial dose group of chlorogenic acid,ferulic acid and senkyunolide A was significantly decreased,the expression of VEGF,ICAM-1 and VCAM-1 in the cells of the partial dose group of chlorogenic acid,ferulic acid and senkyunolide H was significantly decreased,the expression of NF-κB in the cells of the partial dose group of chlorogenic acid,ferulic acid,senkyunolide H and ligustilide was significantly decreased,the expression of PAI-1 in the cells of ferulic acid and senkyunolide H partial dose group decreased significantly(P<0.05,P<0.01);The mRNA relative expression levels of ERK,VEGF,NF-κB,VEGFR2 and MMP9 were significantly down-regulated in the cells of chlorogenic acid,ferulic acid,caffeic acid,butylidenephthalide and senkyunolide A partial dose group,while the mRNA relative expression levels of AKT were significantly up-regulated in the cells of senkyunolide H and senkyunolide A partial dose groups(P<0.05,P<0.01).Conclusion The medicinal components of Danggui-Chuanxiong herb pair may play a role in IS by inhibiting the mRNA expression of adhesion factor,inflammatory factor and key protein of VEGF-PI3K-AKT/NF-κB signaling pathway in HUVEC.
10.The hard tissue thickness of primary teeth studied by CBCT
Panxi WANG ; Jinyi LI ; Zhengyang LI ; Shuqi ZHANG ; Qingyu GUO ; Fei LIU
Journal of Practical Stomatology 2024;40(5):703-707
Objective:To analyze the hard tissue thickness in the crown of primary teeth by CBCT.Methods:The CBCT imaging data of 47 children were included,and the hard tissue thickness of primary teeth was measured by MIMICS software.SPSS 22.0 was used for data analysis.Results:The average thickness in the mesial surfaces was the smallest(P<0.01),except for the libial surface of maxillary central incisor and the distal surface of mandibular first primary molar.In primary anteriors,the thickness in the same sur-face of maxillary teeth was greater than that of mandibular teeth significantly(P<0.01)except for the libial surface of primary canine.In primary molars,the thickness of hard tissue in the same part of the distal and lingual side of the maxillary teeth was greater than that of the mandibular teeth(P<0.01),and the thickness in the buccal side of maxillary teeth was lower than that of the mandibular teeth(P<0.01).Conclusion:The distribution of hard tissue thickness of primary teeth in different position is different.

Result Analysis
Print
Save
E-mail