1.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
2.Comparative Study of Diffuse Large B-Cell Lymphoma and Reactive Lymphoid Hyperplasia Lymph Node Derived Mesenchymal Stem Cells.
Yu-Shuo MA ; Zhi-He LIU ; Yang SUN ; Yu-Hang ZHANG ; Wen-Qiu WANG ; Li-Sheng WANG ; Xia ZHAO
Journal of Experimental Hematology 2025;33(5):1516-1523
OBJECTIVE:
To investigate the biological behavior, differentiation ability, and differential gene expression of lymph node mesenchymal stem cells (MSCs) in patients with diffuse large B-cell lymphoma (DLBCL) and reactive lymphoid hyperplasia (RLH), providing a theoretical basis for clinical chemotherapy resistance.
METHODS:
Lymph node MSCs from patients with DLBCL and RLH were separated, passaged and cultured. The cell morphology and growth status were observed. Flow cytometry was performed to detect the immune phenotype of MSCs. The in vitro directed differentiation ability of the two types of MSCs was observed. High-throughput sequencing was used to analyze the differential gene expression and enrichment of two groups of MSCs.
RESULTS:
The lymph node MSCs of patients with DLBCL and RLH had similar cell morphology and growth characteristics, and both groups of MSCs expressed CD90, CD105, and CD73 on the cell surface. Compared with lymph node MSCs derived from patients with RLH, lymph node MSCs derived from DLBCL patients showed stronger osteogenic and adipogenic differentiation abilities. High-throughput sequencing results displayed that lymph node MSCs derived from DLBCL patients significantly upregulated some genes such as TOP2A, LFNG, GRIA3, SEC14L2, SPON2, AURKA, LRRC15, FOXD1, HOXC9, CDC20 and remarkably downregulated some genes such as TBC1D8, LDLR, PCDHAC2, POLH, PKP2, ANKRD37, DMKN, HSD11B1, ARHGAP20, PTGS1,etc.
CONCLUSION
Lymph node MSCs in DLBCL patients exhibit unique biological behavior and gene expression profiles, which may be closely related to clinical chemotherapy resistance.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Differentiation
;
Lymph Nodes/pathology*
;
Pseudolymphoma/pathology*
3.A Retrospective Study of Pregnancy and Fetal Outcomes in Mothers with Hepatitis C Viremia.
Wen DENG ; Zi Yu ZHANG ; Xin Xin LI ; Ya Qin ZHANG ; Wei Hua CAO ; Shi Yu WANG ; Xin WEI ; Zi Xuan GAO ; Shuo Jie WANG ; Lin Mei YAO ; Lu ZHANG ; Hong Xiao HAO ; Xiao Xue CHEN ; Yuan Jiao GAO ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(7):829-839
OBJECTIVE:
To investigate chronic hepatitis C virus (HCV) infection's effect on gestational liver function, pregnancy and delivery complications, and neonatal development.
METHODS:
A total of 157 HCV antibody-positive (anti-HCV[+]) and HCV RNA(+) patients (Group C) and 121 anti-HCV(+) and HCV RNA(-) patients (Group B) were included as study participants, while 142 anti-HCV(-) and HCV RNA(-) patients (Group A) were the control group. Data on biochemical indices during pregnancy, pregnancy complications, delivery-related information, and neonatal complications were also collected.
RESULTS:
Elevated alanine aminotransferase (ALT) rates in Group C during early, middle, and late pregnancy were 59.87%, 43.95%, and 42.04%, respectively-significantly higher than Groups B (26.45%, 15.70%, 10.74%) and A (23.94%, 19.01%, 6.34%) ( P < 0.05). Median ALT levels in Group C were significantly higher than in Groups A and B at all pregnancy stages ( P < 0.05). No significant differences were found in neonatal malformation rates across groups ( P > 0.05). However, neonatal jaundice incidence was significantly greater in Group C (75.16%) compared to Groups A (42.25%) and B (57.02%) ( χ 2 = 33.552, P < 0.001). HCV RNA positivity during pregnancy was an independent risk factor for neonatal jaundice ( OR = 2.111, 95% CI 1.242-3.588, P = 0.006).
CONCLUSIONS
Chronic HCV infection can affect the liver function of pregnant women, but does not increase the pregnancy or delivery complication risks. HCV RNA(+) is an independent risk factor for neonatal jaundice.
Humans
;
Female
;
Pregnancy
;
Adult
;
Pregnancy Complications, Infectious/epidemiology*
;
Retrospective Studies
;
Pregnancy Outcome
;
Infant, Newborn
;
Viremia/virology*
;
Hepatitis C
;
Hepacivirus/physiology*
;
Hepatitis C, Chronic/virology*
;
Young Adult
;
Alanine Transaminase/blood*
4.Clinical efficacy of a novel autologous blood recovery device during ECMO weaning
Yufeng LU ; Chuanfa ZHANG ; Dongmei FAN ; Shuo HU ; Xianming WEN ; Ziyou LIU
Chinese Journal of Blood Transfusion 2025;38(11):1573-1576
Objective: To evaluate the clinical efficacy of a novel autologous blood recovery device during the weaning process from extracorporeal membrane oxygenation (ECMO). Methods: A total of 16 patients who received ECMO support and underwent blood recovery during the weaning process from January 2022 to September 2024 at our hospital were included in the experimental group. In contrast, 58 patients who did not receive blood recovery during the weaning process were assigned to the control group. Transfusion components, costs, and changes in routine blood tests and coagulation functions were compared between the two groups from the day of weaning until 48 hours post-weaning. Results: Significant differences were observed in the volumes of red blood cell transfusions, plasma transfusions, and transfusion costs between the two groups from the day of weaning to 48 hours post-weaning (P<0.05). Additionally, in the experimental group, significant differences were noted in hemoglobin (Hb), platelet (Plt), and activated partial thromboplastin time (APTT) results when comparing values before and after extubation (P<0.05). Conclusion: The application of a novel autologous blood recovery device during ECMO weaning reduces patient costs, minimizes wastage of autologous blood, decreases reliance on exogenous blood transfusions, and mitigates the risks associated with allogeneic blood transfusion. This approach merits further promotion for clinical use.
5.Efficacy and safety of botulinum toxin type A injection combined with sacral neuro-modulation in the treatment of idiopathic non-obstructive urinary retention
Yongkun ZENG ; Qingwei WANG ; Wen ZHU ; Zikai LI ; Shuo XU ; Chuanyu WANG ; Ke JIN
Journal of Modern Urology 2025;30(12):1069-1074
Objective To evaluate the efficacy and safety of botulinum toxin A (BTX-A) injection into the external urethral sphincter in combination with sacral neuromodulation (SNM) for the treatment of idiopathic non-obstructive urinary retention (INOUR). Methods A total of 57 INOUR patients treated in our hospital during May 2022 and May 2024 were enrolled. Patients were divided into the BTX (n=30) and combined groups (n=27) according to whether they chose SNM after BTX-A injection. The baseline, postoperative 1-month and 6-month consecutive 3-day voiding diaries, quality of life score (QoL), and post-void residual (PVR), preoperative and postoperative 1-month urodynamic results, and postoperative complications were recorded and compared between the two groups. Results One month after surgery, the average number of voiding frequency per day and PVR were lower in both groups than those before surgery (P<0.05), while the average daily urine volume and maximum flow rate (MFR) were higher (P<0.05). There was no statistically significant difference between the maximum detrusor pressure during micturition in both groups before and after surgery (P>0.05). One month after surgery, the average number of voiding frequency per day, average daily urine volume, PVR, QoL, MFR, bladder compliance (BC), and maximum cystometric capacity (MCC) were better in the combined group than in the BTX group (P<0.05), and the efficiency was higher in the combined group (88.9% vs.63.3%, P<0.05). Six months after surgery, the efficacy of the BTX group returned to the baseline level with no statistically significant difference, whereas the efficacy of the combined group was stable (not different from the postoperative 1-month indicators, but better than the baseline level). During the follow-up, there was no difference in the incidence of complications between the BTX group and combined group [43.3% (13/30) vs. 48.1% (13/27), P>0.05]. Conclusion BTX-A injection into the external urethral sphincter combined with SNM improves the short-term outcomes of INOUR patients and maintains the efficacy 6 months postoperatively, which is a safe and reliable treatment option.
6. Study on mechanism of hydroxy-a-sanshool on diabetic cardiomyopathy based on proteomics
Xue WANG ; Shuo HUANG ; Ling YANG ; Wen-Jing XIAO ; Yong-He HU
Chinese Pharmacological Bulletin 2024;40(3):537-544
Aim To explore the mechanism of hydroxy-a-sanshool in the treatment of diabetic cardiomyopathy ( DCM) based on label-free quantitative proteomics detection technique. Methods DCM model was established by high fat diet and intraperitoneal injection of streptozotocin ( STZ) . They were divided into control group ( CON group ) , diabetic cardiomyopathy group (DCM group) and hydroxy-a-sanshool treatment group ( DCM + SAN group) . The cardiac function of mice was evaluated by echocardiography, the myocardial morphology was observed by pathology staining, the protective mechanism of hydroxy-a-sanshool on diabetic cardiomyopathy was speculated by proteomic technique , and the expression level of cAMP/PKA signaling pathway and key proteins were verified by Western blotting. Results Cardiac ultrasound and pathology staining showed that hydroxy-a-sanshool had protective effect on the heart of DCM mice. Label-free quantitative proteomic analysis was carried out between DCM + SAN group and DCM group, and 160 differential pro-teins were identified by proteomics, in which 127 proteins were up-regulated and 33 proteins were down regulated ; GO secondary functional annotations showed the biological process, molecular function and cellular component; KEGG enrichment analysis showed that cAMP signaling pathway was the most abundant; protein interaction network showed that PKA as the central node interacted with many proteins in the cAMP signaling pathway. Western blot showed that the relative expression of с AMP, PKA protein in DCM group was significantly lower than that in CON group ( P < 0. 05 ) , while the relative expression of cAMP, PKA protein in DCM + SAN group was significantly higher than that in DCM group ( P < 0. 05 ) . Conclusions Hydroxy-a-sanshool has protective effect on heart function of mice with diabetes, which plays a role through cAMP signaling pathway.
7.Effects of PM2.5 sub-chronic exposure on liver metabolomics in mice
Liu YANG ; Siqi DOU ; Xinyuan LI ; Shuo WEN ; Kun PAN ; Biao WU ; Jinzhuo ZHAO ; Jianjun XU ; Peng LYU
Journal of Environmental and Occupational Medicine 2024;41(2):207-213
Background Atmospheric fine particulate matter (PM2.5) can disrupt the metabolic homeostasis of the liver and accelerate the progression of liver diseases, but there are few studies on the effects of sub-chronic PM2.5 exposure on the liver metabolome. Objectives To investigate the effects of sub-chronic exposure to concentrated PM2.5 on hepatic metabolomics in mice by liquid chromatography-mass spectrometry (LC-MS), and to identify potentially affected metabolites and metabolic pathways. Methods Twelve male C57BL/6J (6 weeks old) mice were randomly divided into two groups: a concentrated PM2.5 exposure group and a clean air exposure group. The mice were exposed to concentrated PM2.5 using the "Shanghai Meteorological and Environmental Animal Exposure System" at Fudan University. The exposure duration was 8 h per day, 6 d per week, for a total of 8 weeks. The mice's liver tissues were collected 24 h after the completion of exposure. LC-MS was performed to assess changes in the hepatic metabolome. Orthogonal partial least squares discriminant analysis and t-test were employed to identify differentially regulated metabolites between the two groups under the conditions of variable important in projection (VIP)≥1.0 and P<0.05. Metabolic pathway enrichment analysis was performed using MetaboAnalyst 5.0 software and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Results A total of 297 differentially regulated metabolites were identified between the concentrated PM2.5 exposure group and the clean air group. Among these metabolites, 142 were upregulated and 155 were downregulated. A total of 38 metabolic pathways were altered, with 7 pathways showing significant perturbation (P<0.05). These pathways involved amino acid metabolism, glucose metabolism, nucleotide metabolism, as well as cofactor and vitamin metabolism. The 7 significant metabolic pathways were pantothenic acid and coenzyme A biosynthesis; purine metabolism; amino sugar and nucleotide sugar metabolism; arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and fructose and mannose metabolism. Conclusion The results from metabolomics analysis suggest that sub-chronic exposure to PM2.5 may disrupt hepatic energy metabolism and induce oxidative stress damage. Aspartic acid, succinic acid, ornithine, fumaric acid, as well as purine and xanthine derivatives, were identified as potential early biomarkers of hepatic response to sub-chronic PM2.5 exposure.
8.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
9.Research progress on experimental animal models of Huntington's disease
Shuo FU ; Wen ZHANG ; Junke SONG ; Guanhua DU
Acta Laboratorium Animalis Scientia Sinica 2024;32(8):1065-1076
Huntington's disease(HD)is an autosomal dominant neurodegenerative disease,with the main symptoms including chorea-like involuntary movements,psychiatric behavioral abnormalities,and cognitive impairment,which severely affect the lives of patients and consume extensive social and medical resources.Various experimental animal models of HD have been successfully established,to further our understanding of the pathological mechanisms and to explore treatment method of HD.This review outlines the establishment and application of various animal models,ranging from Caenorhabditis elegans,Drosophila melanogaster and zebrafish to mice,rats and miniature pigs,and analyzes the characteristics and advantages of the different models.By reviewing the different animal models and their relevant evaluation indicators,this article emphasizes the importance of utilizing a combination of multiple animal models to promote a deeper understanding of the disease mechanisms and develop effective treatment strategies.
10.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

Result Analysis
Print
Save
E-mail