1.The Mechanisms of Neurotransmitters and Their Receptors in Exercise Central Fatigue
Lu-Lu GUAN ; Bo-Te QI ; Du-Shuo FENG ; Jing-Wang TAN ; Meng CAO ; Yu ZOU
Progress in Biochemistry and Biophysics 2025;52(6):1321-1336
Exercise fatigue is a complex physiological and psychological phenomenon that includes peripheral fatigue in the muscles and central fatigue in the brain. Peripheral fatigue refers to the loss of force caused at the distal end of the neuromuscular junction, whereas central fatigue involves decreased motor output from the primary motor cortex, which is associated with modulations at anatomical sites proximal to nerves that innervate skeletal muscle. The central regulatory failure reflects a progressive decline in the central nervous system’s capacity to recruit motor units during sustained physical activity. Emerging evidence highlights the critical involvement of central neurochemical regulation in fatigue development, particularly through neurotransmitter-mediated modulation. Alterations in neurotransmitter release and receptor activity could influence excitatory and inhibitory signal pathways, thus modulating the perception of fatigue and exercise performance. Increased serotonin (5-HT) could increase perception of effort and lethargy, reduce motor drive to continue exercising, and contribute to exercise fatigue. Decreased dopamine (DA) and noradrenaline (NE) neurotransmission can negatively impact arousal, mood, motivation, and reward mechanisms and impair exercise performance. Furthermore, the serotonergic and dopaminergic systems interact with each other; a low 5-HT/DA ratio enhances motor motivation and improves performance, and a high 5-HT/DA ratio heightens fatigue perception and leads to decreased performance. The expression and activity of neurotransmitter receptors would be changed during prolonged exercise to fatigue, affecting the transmission of nerve signals. Prolonged high-intensity exercise causes excess 5-HT to overflow from the synaptic cleft to the axonal initial segment and activates the 5-HT1A receptor, thereby inhibiting the action potential of motor neurons and affecting the recruitment of motor units. During exercise to fatigue, the DA secretion is decreased, which blocks the binding of DA to D1 receptor in the caudate putamen and inhibits the activation of the direct pathway of the basal ganglia to suppress movement, meanwhile the binding of DA to D2 receptor is restrained in the caudate putamen, which activates the indirect pathway of the basal ganglia to influence motivation. Furthermore, other neurotransmitters and their receptors, such as adenosine (ADO), glutamic acid (Glu), and γ‑aminobutyric acid (GABA) also play important roles in regulating neurotransmitter balance and fatigue. The occurrence of central fatigue is not the result of the action of a single neurotransmitter system, but a comprehensive manifestation of the interaction between multiple neurotransmitters. This review explores the important role of neurotransmitters and their receptors in central motor fatigue, reveals the dynamic changes of different neurotransmitters such as 5-HT, DA, NE, and ADO during exercise, and summarizes the mechanisms by which these neurotransmitters and their receptors regulate fatigue perception and exercise performance through complex interactions. Besides, this study presents pharmacological evidence that drugs such as agonists, antagonists, and reuptake inhibitors could affect exercise performance by regulating the metabolic changes of neurotransmitters. Recently, emerging interventions such as dietary bioactive components intake and transcranial electrical stimulation may provide new ideas and strategies for the prevention and alleviation of exercise fatigue by regulating neurotransmitter levels and receptor activity. Overall, this work offers new theoretical insights into the understanding of exercise central fatigue, and future research should further investigate the relationship between neurotransmitters and their receptors and exercise fatigue.
2.Time-series association between heatwaves and emergency ambulance calls in Dezhou City, Shandong Province
Shuo CAO ; Mingxiao GUO ; Qi ZHAO ; Yanling WU ; Peijie WANG
Journal of Environmental and Occupational Medicine 2025;42(8):939-945
Background In the context of global climate change, heatwaves pose an increasing threat to human health. Emergency ambulance calls are an important outcome indicator of acute health response in populations during heatwave weather. However, studies on the association between emergency ambulance calls and heatwaves in China have primarily focused on the southern regions, and less attention is paid to the northern regions, which hinders a comprehensive assessment of acute health impact posed by extreme heat. Objective To quantify the association between heatwaves and emergency ambulance calls in Dezhou City, Shandong Province. Methods The data on daily records of emergency ambulance calls, meteorological factors, and air pollution from May to September of 2020 to 2022 in Dezhou City, Shandong Province were collected. Heatwaves were defined by combining thresholds at the 90th, 92.5th, 95th, and 97.5th percentiles (P90, P92.5, P95, and P97.5) of the year-round daily mean temperature and durations of ≥2, 3, or 4 consecutive days, respectively. A generalized additive model with a distributed lag nonlinear model was used to estimate the relative risk of emergency ambulance calls during heatwave days compared with non-heatwave days. Results During the study period, a total of
3.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
4.Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys.
Xin LV ; Jie LIU ; Shuo MA ; Yuhan WANG ; Yixin PAN ; Xian QIU ; Yu CAO ; Bomin SUN ; Shikun ZHAN
Journal of Zhejiang University. Science. B 2025;26(7):694-707
Abuse of amphetamine-based stimulants is a primary public health concern. Recent studies have underscored a troubling escalation in the inappropriate use of prescription amphetamine-based stimulants. However, the neurophysiological mechanisms underlying the impact of acute methamphetamine exposure (AME) on sleep homeostasis remain to be explored. This study employed non-human primates and electroencephalogram (EEG) sleep staging to evaluate the influence of AME on neural oscillations. The primary focus was on alterations in spindles, delta oscillations, and slow oscillations (SOs) and their interactions as conduits through which AME influences sleep stability. AME predominantly diminishes sleep-spindle waves in the non-rapid eye movement 2 (NREM2) stage, and impacts SOs and delta waves differentially. Furthermore, the competitive relationships between SO/delta waves nesting with sleep spindles were selectively strengthened by methamphetamine. Complexity analysis also revealed that the SO-nested spindles had lost their ability to maintain sleep depth and stability. In summary, this finding could be one of the intrinsic electrophysiological mechanisms by which AME disrupted sleep homeostasis.
Animals
;
Methamphetamine
;
Electroencephalography
;
Male
;
Sleep/drug effects*
;
Central Nervous System Stimulants
;
Delta Rhythm/drug effects*
;
Sleep Stages/drug effects*
5.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
6.Free fatty acid receptor-4 regulates T-cell-mediated allogeneic reaction through activating an aryl hydrocarbon receptor pathway.
Maxwell DUAH ; Fei ZHENG ; Jingyi SHEN ; Yan XU ; Shuo CAO ; Zhiling YAN ; Qiu LAN ; Ying WANG ; Kailin XU ; Bin PAN
Acta Pharmaceutica Sinica B 2025;15(1):224-238
Targeting T-cell is a strategy to control allogeneic response disorders, such as acute graft-versus-host disease (GVHD) which is an important cause of therapy-failure after allogeneic hematopoietic cell transplants. Free fatty acid receptor-4 (FFAR4) is a regulator of obesity but its role in T-cell and allogeneic reactions is unknown. Here, we found knockout of Ffar4 in donor T-cells in a mouse allograft model increased acute GVHD whereas the natural FFAR4 ligands and the synthetic FFAR4 agonists decreased it. FFAR4 agonist-mediated anti-acute GVHD effects depended on FFAR4-expression in donor T-cells. The FFAR4 agonist CpdA suppressed donor T-cell-mediated alloreaction by activating an aryl hydrocarbon receptor (AhR) pathway. CpdA recruited β-Arrestin2 to FFAR4 which facilitated nuclear translocation of AhR and upregulation of IL-22. The CpdA-mediated anti-acute GVHD effect was absent in mice receiving Ahr-knockout or Il22-knockout T-cells. Recipient-expressing Ffar4 was also important for the anti-acute GVHD effect of CpdA which inhibited activation of antigen presenting cells. Importantly, CpdA decreased acute GVHD in obese mice, an effect also depended on Ffar4-expression in donor T-cells and recipients. Our study shows the immunoregulatory effect of FFAR4 in T-cell, and targeting FFAR4 might be a relative option for controlling allogeneic reactions in obese patients.
7.Cannabidiol regulates circadian rhythm to improve sleep disorders following general anesthesia in rats.
Xinshun WU ; Jingcao LI ; Ying LIU ; Renhong QIU ; Henglin WANG ; Rui XYE ; Yang ZHANG ; Shuo LI ; Qiongyin FAN ; Huajin DONG ; Youzhi ZHANG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):744-750
OBJECTIVES:
To assess the regulatory effect of cannabidiol (CBD) on circadian rhythm sleep disorders following general anesthesia and explore its potential mechanism in a rat model of propofol-induced rhythm sleep disorder.
METHODS:
An electrode was embedded in the skull for cortical EEG recording in 24 male SD rats, which were randomized into control, propofol, CBD treatment, and diazepam treatment groups (n=6). Eight days later, a single dose of propofol (10 mg/kg) was injected via the tail vein with anesthesia maintenance for 3 h in the latter 3 groups, and daily treatment with saline, CBD or diazepam was administered via gavage; the control rats received only saline injection. A wireless system was used for collecting EEG, EMG, and body temperature data within 72 h after propofol injection. After data collection, blood samples and hypothalamic tissue samples were collected for determining serum levels of oxidative stress markers and hypothalamic expressions of the key clock proteins.
RESULTS:
Compared with the control rats, the rats with CBD treatment showed significantly increased sleep time at night (20:00-6:00), especially during the time period of 4:00-6:00 am. Compared with the rats in propofol group, which had prolonged SWS time and increased sleep episodes during 18:00-24:00 and sleep-wake transitions, the CBD-treated rats exhibited a significant reduction of SWS time and fewer SWS-to-active-awake transitions with increased SWS aspects and sleep-wake transitions at night (24:00-08:00). Diazepam treatment produced similar effect to CBD but with a weaker effect on sleep-wake transitions. Propofol caused significant changes in protein expressions and redox state, which were effectively reversed by CBD treatment.
CONCLUSIONS
CBD can improve sleep structure and circadian rhythm in rats with propofol-induced sleep disorder possibly by regulating hypothalamic expressions of the key circadian clock proteins, suggesting a new treatment option for perioperative sleep disorders.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Cannabidiol/therapeutic use*
;
Rats
;
Circadian Rhythm/drug effects*
;
Propofol/adverse effects*
;
Anesthesia, General/adverse effects*
;
Sleep Wake Disorders/chemically induced*
;
Hypothalamus/metabolism*
;
Electroencephalography
8.A Retrospective Study of Pregnancy and Fetal Outcomes in Mothers with Hepatitis C Viremia.
Wen DENG ; Zi Yu ZHANG ; Xin Xin LI ; Ya Qin ZHANG ; Wei Hua CAO ; Shi Yu WANG ; Xin WEI ; Zi Xuan GAO ; Shuo Jie WANG ; Lin Mei YAO ; Lu ZHANG ; Hong Xiao HAO ; Xiao Xue CHEN ; Yuan Jiao GAO ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(7):829-839
OBJECTIVE:
To investigate chronic hepatitis C virus (HCV) infection's effect on gestational liver function, pregnancy and delivery complications, and neonatal development.
METHODS:
A total of 157 HCV antibody-positive (anti-HCV[+]) and HCV RNA(+) patients (Group C) and 121 anti-HCV(+) and HCV RNA(-) patients (Group B) were included as study participants, while 142 anti-HCV(-) and HCV RNA(-) patients (Group A) were the control group. Data on biochemical indices during pregnancy, pregnancy complications, delivery-related information, and neonatal complications were also collected.
RESULTS:
Elevated alanine aminotransferase (ALT) rates in Group C during early, middle, and late pregnancy were 59.87%, 43.95%, and 42.04%, respectively-significantly higher than Groups B (26.45%, 15.70%, 10.74%) and A (23.94%, 19.01%, 6.34%) ( P < 0.05). Median ALT levels in Group C were significantly higher than in Groups A and B at all pregnancy stages ( P < 0.05). No significant differences were found in neonatal malformation rates across groups ( P > 0.05). However, neonatal jaundice incidence was significantly greater in Group C (75.16%) compared to Groups A (42.25%) and B (57.02%) ( χ 2 = 33.552, P < 0.001). HCV RNA positivity during pregnancy was an independent risk factor for neonatal jaundice ( OR = 2.111, 95% CI 1.242-3.588, P = 0.006).
CONCLUSIONS
Chronic HCV infection can affect the liver function of pregnant women, but does not increase the pregnancy or delivery complication risks. HCV RNA(+) is an independent risk factor for neonatal jaundice.
Humans
;
Female
;
Pregnancy
;
Adult
;
Pregnancy Complications, Infectious/epidemiology*
;
Retrospective Studies
;
Pregnancy Outcome
;
Infant, Newborn
;
Viremia/virology*
;
Hepatitis C
;
Hepacivirus/physiology*
;
Hepatitis C, Chronic/virology*
;
Young Adult
;
Alanine Transaminase/blood*
9.Interpretation on the report of global cancer statistics 2022
Xi ZHANG ; Lei YANG ; Shuo LIU ; Lili CAO ; Ning WANG ; Huichao LI ; Jiafu JI
Chinese Journal of Oncology 2024;46(7):710-721
In April 2024, the World Health Organization/International Agency for Research on Cancer (IARC) published the global cancer statistics 2022 in the CA: Cancer Journal for Clinicians. This report focuses on the incidence and mortality of 36 cancers in 185 countries or territories worldwide, analyzing the differences of gender, geographic region, and the Human Development Index (HDI) level. It is estimated that in the year 2022, there were 19.96 million new cancer cases and 9.74 million cancer deaths worldwide. Lung cancer (2 480 301, 12.4%) was the most frequently diagnosed cancer in 2022, followed by female breast cancer (2 295 686, 11.5%), colorectal cancer (1 926 118, 9.6%), prostate cancer (1 466 680, 7.3%), and gastric cancer (968 350, 4.9%). Lung cancer (1 817 172, 18.7%) was also the leading cause of cancer death, followed by colorectal cancer (903 859, 9.3%), liver cancer (757 948, 7.8%), female breast cancer (665 684, 6.9%), and gastric cancer (659 853, 6.8%). With demographics-based predictions indicating that the number of new cases of cancer will reach over 35 million by 2050. The Beijing Office for Cancer Prevention and Control team has collated this report and briefly interpreted it in combination with the current situation of cancer incidence and mortality in China.
10.Interpretation on the report of global cancer statistics 2022
Xi ZHANG ; Lei YANG ; Shuo LIU ; Lili CAO ; Ning WANG ; Huichao LI ; Jiafu JI
Chinese Journal of Oncology 2024;46(7):710-721
In April 2024, the World Health Organization/International Agency for Research on Cancer (IARC) published the global cancer statistics 2022 in the CA: Cancer Journal for Clinicians. This report focuses on the incidence and mortality of 36 cancers in 185 countries or territories worldwide, analyzing the differences of gender, geographic region, and the Human Development Index (HDI) level. It is estimated that in the year 2022, there were 19.96 million new cancer cases and 9.74 million cancer deaths worldwide. Lung cancer (2 480 301, 12.4%) was the most frequently diagnosed cancer in 2022, followed by female breast cancer (2 295 686, 11.5%), colorectal cancer (1 926 118, 9.6%), prostate cancer (1 466 680, 7.3%), and gastric cancer (968 350, 4.9%). Lung cancer (1 817 172, 18.7%) was also the leading cause of cancer death, followed by colorectal cancer (903 859, 9.3%), liver cancer (757 948, 7.8%), female breast cancer (665 684, 6.9%), and gastric cancer (659 853, 6.8%). With demographics-based predictions indicating that the number of new cases of cancer will reach over 35 million by 2050. The Beijing Office for Cancer Prevention and Control team has collated this report and briefly interpreted it in combination with the current situation of cancer incidence and mortality in China.

Result Analysis
Print
Save
E-mail