2.FOXO3-engineered human mesenchymal stem cells efficiently enhance post-ischemic stroke functional rehabilitation.
Fangshuo ZHENG ; Jinghui LEI ; Zan HE ; Taixin NING ; Shuhui SUN ; Yusheng CAI ; Qian ZHAO ; Shuai MA ; Weiqi ZHANG ; Jing QU ; Guang-Hui LIU ; Si WANG
Protein & Cell 2025;16(5):365-373
3.Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation.
Min WANG ; Zan HE ; Anqi WANG ; Shuhui SUN ; Jiaming LI ; Feifei LIU ; Chunde LI ; Chengxian YANG ; Jinghui LEI ; Yan YU ; Shuai MA ; Si WANG ; Weiqi ZHANG ; Zhengrong YU ; Guang-Hui LIU ; Jing QU
Protein & Cell 2025;16(8):667-684
Lumbar disc (LD) herniation and aging are prevalent conditions that can result in substantial morbidity. This study aimed to clarify the mechanisms connecting the LD aging and herniation, particularly focusing on cellular senescence and molecular alterations in the nucleus pulposus (NP). We performed a detailed analysis of NP samples from a diverse cohort, including individuals of varying ages and those with diagnosed LD herniation. Our methodology combined histological assessments with single-nucleus RNA sequencing to identify phenotypic and molecular changes related to NP aging and herniation. We discovered that cellular senescence and a decrease in nucleus pulposus progenitor cells (NPPCs) are central to both processes. Additionally, we found an age-related increase in NFAT1 expression that promotes NPPC senescence and contributes to both aging and herniation of LD. This research offers fresh insights into LD aging and its associated pathologies, potentially guiding the development of new therapeutic strategies to target the root causes of LD herniation and aging.
Intervertebral Disc Displacement/metabolism*
;
Humans
;
Aging/pathology*
;
Nucleus Pulposus/pathology*
;
Male
;
Female
;
Transcriptome
;
Middle Aged
;
Lumbar Vertebrae/pathology*
;
Adult
;
Cellular Senescence
;
Stem Cells/pathology*
;
Aged
;
Intervertebral Disc Degeneration/metabolism*
4.Impairment of Autophagic Flux After Hypobaric Hypoxia Potentiates Oxidative Stress and Cognitive Function Disturbances in Mice.
Shuhui DAI ; Yuan FENG ; Chuanhao LU ; Hongchen ZHANG ; Wenke MA ; Wenyu XIE ; Xiuquan WU ; Peng LUO ; Lei ZHANG ; Fei FEI ; Zhou FEI ; Xia LI
Neuroscience Bulletin 2024;40(1):35-49
Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.
Mice
;
Animals
;
Hypoxia
;
Oxidative Stress
;
Autophagy
;
Cognition
;
Sirolimus/therapeutic use*
5.Microglial EPOR Contribute to Sevoflurane-induced Developmental Fine Motor Deficits Through Synaptic Pruning in Mice.
Danyi HE ; Xiaotong SHI ; Lirong LIANG ; Youyi ZHAO ; Sanxing MA ; Shuhui CAO ; Bing LIU ; Zhenzhen GAO ; Xiao ZHANG ; Ze FAN ; Fang KUANG ; Hui ZHANG
Neuroscience Bulletin 2024;40(12):1858-1874
Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.
Animals
;
Sevoflurane/toxicity*
;
Microglia/drug effects*
;
Anesthetics, Inhalation/adverse effects*
;
Mice
;
Mice, Inbred C57BL
;
Receptors, Erythropoietin/metabolism*
;
Neuronal Plasticity/drug effects*
;
Male
;
Prefrontal Cortex/drug effects*
;
Erythropoietin/pharmacology*
;
Signal Transduction/drug effects*
6.A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis.
Daoyuan HUANG ; Yuesheng ZUO ; Chen ZHANG ; Guoqiang SUN ; Ying JING ; Jinghui LEI ; Shuai MA ; Shuhui SUN ; Huifen LU ; Yusheng CAI ; Weiqi ZHANG ; Fei GAO ; Andy PENG XIANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Jing QU ; Si WANG
Protein & Cell 2023;14(12):888-907
The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.
Animals
;
Male
;
Testis
;
Sertoli Cells/metabolism*
;
Transcriptome
;
Spermatogenesis/genetics*
;
Primates
;
Aging/genetics*
;
Stem Cells
7.Single-cell transcriptomic atlas of mouse cochlear aging.
Guoqiang SUN ; Yandong ZHENG ; Xiaolong FU ; Weiqi ZHANG ; Jie REN ; Shuai MA ; Shuhui SUN ; Xiaojuan HE ; Qiaoran WANG ; Zhejun JI ; Fang CHENG ; Kaowen YAN ; Ziyi LIU ; Juan Carlos Izpisua BELMONTE ; Jing QU ; Si WANG ; Renjie CHAI ; Guang-Hui LIU
Protein & Cell 2023;14(3):180-201
Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.
Mice
;
Animals
;
Transcriptome
;
Aging/metabolism*
;
Cochlea
;
Stria Vascularis
;
Presbycusis
8.Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway.
Shuhui WANG ; Pan LEI ; Ying FENG ; Mingzhu JIANG ; Zegan LIU ; Ting SHEN ; Shinan MA ; Libo WANG ; Xingrong GUO ; Shiming DU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):423-435
Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings. However, the potential role of JYQR in ALI/acute respiratory distress syndrome (ARDS) and its anti-inflammatory mechanism remains unexplored. Thus, the present study aimed to investigate the therapeutic effects and underlying molecular mechanisms of JYQR in ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI and an in vitro RAW264.7 cell model. JYQR yielded substantial improvements in LPS-induced histological alterations in lung tissues. Additionally, JYQR administration led to a noteworthy reduction in total protein levels within the BALF, a decrease in MPAP, and attenuation of pleural thickness. These findings collectively highlight the remarkable efficacy of JYQR in mitigating the deleterious effects of LPS-induced ALI. Mechanistic investigations revealed that JYQR pretreatment significantly inhibited NF-κB activation and downregulated the expressions of the downstream proteins, namely NLRP3 and GSDMD, as well as proinflammatory cytokine levels in mice and RAW2647 cells. Consequently, JYQR alleviated LPS-induced ALI by inhibiting the NF-κB/NLRP3/GSDMD pathway. JYQR exerts a protective effect against LPS-induced ALI in mice, and its mechanism of action involves the downregulation of the NF-κB/NLRP3/GSDMD inflammatory pathway.
Humans
;
NF-kappa B/metabolism*
;
Lipopolysaccharides/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Acute Lung Injury/metabolism*
;
Lung
;
Phosphate-Binding Proteins/therapeutic use*
;
Pore Forming Cytotoxic Proteins/therapeutic use*
9.Clinical observation on acupuncture for 80 patients with abdominal obesity in Germany: based on the theory of unblocking and regulating the Belt Vessel
Yuanyuan LI ; Hang XIONG ; Shuhui MA ; Jingzhang DAI
Journal of Acupuncture and Tuina Science 2023;21(2):137-141
Objective: To observe the efficacy of unblocking and regulating the Belt Vessel acupuncture method for patients with abdominal obesity in Germany and its influence on the body fat parameters and glycolipids metabolism. Methods: A total of 82 cases of abdominal obesity in Germany were selected. There were two dropout cases in the treatment process. All of the patients received acupuncture at Daimai (GB26), Daheng (SP15), Tianshu (ST25), Zhongwan (CV12), Shuidao (ST28), Waiguan (TE5), and Zulinqi (GB41). The patients received acupuncture therapy once every 2-3 d, 3 times a week. The treatment duration lasted 4 weeks. Before and after treatment, the body mass (BM), waist circumference (WC), abdominal circumference (AC), hip circumference (HC), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose (GLU) were measured respectively, and the body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), and body fat rate (BFR) were calculated. Results: After treatment, the total effective rate was 72.5%; the levels of BM, WC, AC, HC, BMI, WHR, WHtR, BFR, TC, LDL-C, and GLU declined significantly compared with those before treatment (P<0.01), while the TG and HDL-C slightly declined, but the differences were statistically insignificant (P>0.05). Conclusion: The unblocking and regulating the Belt Vessel acupuncture method can significantly reduce body fat parameters such as BM, AC, and BFR, and correct the disorders of glucose and lipid metabolism in patients with abdominal obesity in Germany.
10.Correlation between cognitive function and living ability of older adult patients living in a mining community
Shuhui XU ; Wenqi ZHANG ; Mingjie YAO ; Lei ZHANG ; Kaixuan ZHANG ; Jingxiang HAN ; Yining ZHAO ; Tao MENG ; Fang PEI ; Jiezhong YU ; Cungen MA
Chinese Journal of Primary Medicine and Pharmacy 2022;29(4):544-548
Objective:To investigate the correlation between cognitive function and living ability of older adult patients living in a mining community.Methods:A total of 180 older adult patients living in a mining community who received treatment during July-October 2019 were included in this study. They were randomly divided into the low-age group (< 68 years old, n = 94) and the high-age group (≥ 68 years old, n = 86). Cognitive function and living ability were evaluated using the Mini-Mental State Examination (MMSE), The Montreal Cognitive Assessment (MoCA), and the Activity of Daily Living Scale (ADL). The relationship between cognitive function and living ability was investigated using hierarchical analysis and Pearson correlation analysis. Results:The proportions of older adult patients with abnormal cognitive function identified by the MMSE and MoCA were 39.4% and 66.0%, respectively in the low-age group, and they were 32.6% and 61.6%, respectively in the high-age group. The MoCA had a greater performance in identifying abnormal cognitive function in each group than the MMSE ( χ2 = 26.69, 10.18, both P < 0.001). There were no significant differences in proportions of older adult patients with abnormal cognitive function identified by the MMSE and MoCA between low-age and high-age groups ( χ2 = 0.90, 0.36, both P > 0.05). The proportion of older adult patients with abnormal living ability was not significantly different between low-age and high-age groups (4.3% vs. 10.5%, χ2 = 2.58, P > 0.05). Compared with patients negative for MMSE items, living ability and instrumental activity of daily living increased by 7.0% and 9.4% in low-age patients positive for MMSE items (both P < 0.05). Compared with patients negative for MoCA items, living ability increased by 3.5% in low-age patients positive for MoCA items ( P < 0.05). Correlation analysis revealed that total scores of MMSE and MoCA were significantly negatively correlated with ADL score ( r = -0.26, -0.27, both P < 0.001) and instrumental activity of daily living score ( r = -0.27, -0.27, P < 0.001). Conclusion:Cognitive function and living ability are correlated in older adult patients living in a mining community. We should pay attention to the screening results of cognitive disorder in older adult patients and improve their living ability by improving their cognitive function.

Result Analysis
Print
Save
E-mail