1.Xuefu Zhuyutang in Malignant Tumor Disease: A Review
Jiaqi JI ; Xiaoqing HU ; Yihan ZHAO ; Xuhang SUN ; Dandan WEI ; Junwen PEI ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):321-330
Cancer has become a significant global public health issue, severely impacting public health and societal development. Despite advances in tumor treatment methods in recent years and a gradual decline in cancer mortality rates, drug-related adverse reactions and drug resistance remain substantial challenges. Traditional Chinese medicine (TCM) has demonstrated significant clinical efficacy in cancer treatment and small side effects, making it widely applied in the field of oncology. Xuefu Zhuyutang, derived from Yilin Gaicuo, is known for its abilities to invigorate blood circulation, dispel blood stasis, promote Qi flow, and alleviate pain. It was specifically formulated by the esteemed WANG Qingren of the Qing dynasty for the "blood stasis syndrome in the blood mansion" and is commonly used to treat Qi stagnation and blood stasis syndrome. Clinical studies have shown that Xuefu Zhuyutang, when combined with conventional Western medications, produces significant effects in the treatment of malignant tumors such as liver cancer, lung cancer, and cervical cancer. It substantially reduces the incidence of adverse reactions following Western treatments, including radiation esophagitis, radiation encephalopathy, radiation-induced oral mucositis, and edema. Additionally, it alleviates cancer-related pain and fever, blood hypercoagulability, and associated complications such as depression and anxiety, and also mitigates chemotherapy-induced side effects like hand-foot syndrome. Basic research has demonstrated its potential anti-tumor mechanisms, including the inhibition of Wnt/β-catenin signaling pathway activation, suppression of mitogen-activated protein kinase (MAPK) pathway activation, and anti-tumor angiogenesis. Pharmacological studies have revealed that its active components inhibit tumor cell proliferation and migration, induce tumor cell apoptosis, suppress tumor angiogenesis, enhance the cytotoxicity of natural killer cells against tumors, improve the tumor microenvironment, and regulate immune function. This paper reviewed the latest research progress on Xuefu Zhuyutang in the treatment of malignant tumors from four aspects: theoretical exploration, clinical studies, mechanisms of action, and pharmacological basis, aiming to provide insights and methods for the clinical diagnosis and treatment of malignant tumors.
2.Xuefu Zhuyutang in Malignant Tumor Disease: A Review
Jiaqi JI ; Xiaoqing HU ; Yihan ZHAO ; Xuhang SUN ; Dandan WEI ; Junwen PEI ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):321-330
Cancer has become a significant global public health issue, severely impacting public health and societal development. Despite advances in tumor treatment methods in recent years and a gradual decline in cancer mortality rates, drug-related adverse reactions and drug resistance remain substantial challenges. Traditional Chinese medicine (TCM) has demonstrated significant clinical efficacy in cancer treatment and small side effects, making it widely applied in the field of oncology. Xuefu Zhuyutang, derived from Yilin Gaicuo, is known for its abilities to invigorate blood circulation, dispel blood stasis, promote Qi flow, and alleviate pain. It was specifically formulated by the esteemed WANG Qingren of the Qing dynasty for the "blood stasis syndrome in the blood mansion" and is commonly used to treat Qi stagnation and blood stasis syndrome. Clinical studies have shown that Xuefu Zhuyutang, when combined with conventional Western medications, produces significant effects in the treatment of malignant tumors such as liver cancer, lung cancer, and cervical cancer. It substantially reduces the incidence of adverse reactions following Western treatments, including radiation esophagitis, radiation encephalopathy, radiation-induced oral mucositis, and edema. Additionally, it alleviates cancer-related pain and fever, blood hypercoagulability, and associated complications such as depression and anxiety, and also mitigates chemotherapy-induced side effects like hand-foot syndrome. Basic research has demonstrated its potential anti-tumor mechanisms, including the inhibition of Wnt/β-catenin signaling pathway activation, suppression of mitogen-activated protein kinase (MAPK) pathway activation, and anti-tumor angiogenesis. Pharmacological studies have revealed that its active components inhibit tumor cell proliferation and migration, induce tumor cell apoptosis, suppress tumor angiogenesis, enhance the cytotoxicity of natural killer cells against tumors, improve the tumor microenvironment, and regulate immune function. This paper reviewed the latest research progress on Xuefu Zhuyutang in the treatment of malignant tumors from four aspects: theoretical exploration, clinical studies, mechanisms of action, and pharmacological basis, aiming to provide insights and methods for the clinical diagnosis and treatment of malignant tumors.
3.Mechanism of IGF2BP2 regulation of PPAR-γ/GLUT4 pathway in insulin resistance induced by sodium arsenite exposure in HepG2 cells
Shiqing XU ; Zhida HU ; Qiyao ZHANG ; Siqi ZHAO ; Yujie WANG ; Xiaohui WANG ; Teng MA ; Li WANG
Journal of Environmental and Occupational Medicine 2025;42(4):400-407
Background Arsenic is an environmentally harmful substance that causes hepatic insulin resistance and liver damage, increasing the risk of type 2 diabetes mellitus. Objective To explore whether the insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) is involved in insulin resistance in HepG2 cells after arsenic exposure through the peroxisome-proliferator-activated receptor γ (PPAR-γ) / glucose transporter 4 (GLUT4) pathway. Methods Cell viability was determined using cell counting kit 8 (CCK8) and an appropriate NaAsO2 infection dose was determined. A cellular arsenic exposure model of HepG2 cells was established by four concentrations of NaAsO2 solution for 24 h (the experiment was divided into four groups: 0, 2, 4, and 8 μmol·L−1); HepG2 cells were firstly treated with pcDNA3.1-IGF2BP2 and pcDNA3.1-NC respectively for 6 h, then with 8 μmol·L−1 NaAsO2 for 24 h to establish a IGF2BP2 overexpression cell model (the experiment was divided into 4 groups: control, NaAsO2, NaAsO2+pcDNA3.1-IGF2BP2, and NaAsO2+pcDNA3.1-NC); finally the cells were subject to 100 nmol·L−1 insulin stimulation for 30 min. Glycogen and glucose in HepG2 cells were determined by glycogen and glucose assay kits; mRNA expression levels of IGF2BP2 were measured by quantitative real-time PCR; protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in HepG2 were detected by Western blot (WB); and the binding of IGF2BP2 to PPAR-γ and PPAR-γ to GLUT4 was verified by co-immunoprecipitation (CO-IP) experiment. Results The results of CCK8 experiment showed a dose-effect relationship between NaAsO2 concentration and cell viability. When the concentration of NaAsO2 was ≥4 μmol·L−1 , the cell viabilities were lower than that of the control group (P <0.05). With the increasing dose of NaAsO2 infection, reduced glucose consumption and glycogen levels in HepG2 cells were found in the 2, 4, and 8 μmol·L−1 NaAsO2 treatment groups compared to the control group (P <0.05). The difference between the mRNA expression level of IGF2BP2 in the HepG2 cells treated with 4 or 8 μmol L−1 NaAsO2 and the control group was significant (P <0.05). In the IGF2BP2 overexpression cell model, compared with the control group, glucose consumption and glycogen levels were lowered in the NaAsO2 group (P <0.05), the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all decreased (P <0.05). Compared with the NaAsO2 group, the glucose consumption and glycogen levels were increased in the NaAsO2+pcDNA3.1-IGF2BP2 group (P <0.05), and the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all increased (P <0.05). The results of CO-IP experiments showed that IGF2BP2 interacted with PPAR-γ as well as PPAR-γ with GLUT4 protein. Conclusion IGF2BP2 is involved in arsenic exposure-induced insulin resistance in HepG2 cells by acting on the PPAR-γ/GLUT4 pathway.
4.Analysis of research integrity construction policy based on the cases of research misconduct by the National Natural Science Foundation of China from 2013 to 2022
Yuan HUANG ; Youkun HU ; Zhen JING ; Shiqing LIU ; Wentao WANG ; Yuru PAN ; Zheng CAI
Chinese Journal of Medical Science Research Management 2024;37(4):253-261
Objective:This study compiled a comprehensive overview of the academic misconduct cases handled by the National Natural Science Foundation of China (NSFC) over the past decade, and took it as a representative to analyze the current situation of China′s academic research integrity to propose further enhancement suggestions.Methods:We collected data on academic misconduct cases notified by the NSFC between 2013 and 2022, and conducted a statistical analysis to gain insights into the time of occurrence, the way of discovery, the distribution of disciplines, the types of misconduct, and the handling measures of the NSFC.Results:Between 2013 to 2022, the Funding Committee notified 273 decisions regarding misconduct cases, indicating a general upward trend over time. Among the 158 cases with a labeled discovery pathway, the most common way was funding paper retraction by scientific journals, followed by reporting, and then review by the Funding Committee. The majority of individuals involved were from universities (44.81%) and hospitals affiliated with universities (45.45%). The top three most frequent types of misconduct were plagiarism, manipulation of reviews, and falsification. The Fund Committee's handling measures primarily involved in restrictions on applying for national funds within 2~7 years, notifications and criticisms, project withdrawals, and fund recoveries.Conclusions:Over the past ten years, the number of investigations of academic misconduct by the Fund Committee has been increasing, and the way of discovery has shifted from reporting and retraction by research journals to self-investigation by the Fund Committee. Biomedicine is a key field where misconduct occurs, and universities are the primary institutions where such cases are detected. Common causes of academic misconduct include plagiarism, manipulated peer review, and falsification. The foundation typically imposes punishments that restrict funding applications and issues public criticisms. To strengthen the academic integrity system, it is essential to establish and implement an early warning mechanism for academic integrity, reform the scientific research evaluation system, and establish an academic integrity management platform.
5.Correlation between serum PEDV S1 IgG antibody levels and neutralizing antibody levels in sows
Yaoyao PAN ; Junbo WANG ; Shiqing XIE ; Meiting LIN ; Ye LUO ; Jin ZHENG ; Chengcai HU ; Xinglong YU
Chinese Journal of Veterinary Science 2024;44(7):1367-1372
The aim of this study was to investigate the correlation between porcine epidemic diar-rhea virus(PEDV)S1 IgG antibody levels and neutralizing antibody potency in sow sera.Sera from 5 PEDV-infected farms with a clear immune background,5 non-infected farms and 5 infected farms with an unclear immune background,and sera from return-fed reserve pigs,totaling 716 copies,were collected and measured,and the correlation between PEDV S1 IgG antibodies and neutralizing antibodies was analyzed.The results showed that the PEDV S1 IgG and neutralizing antibodies of sow sera showed highly significant positive correlation,the correlation coefficient was 0.892(P<0.000 1).Previous studies have shown that the level of PEDV neutralizing antibodies in sow serum correlates with the ability of piglets'maternal antibodies to resist PEDV infection.Therefore,the a-bility of maternal antibodies against PEDV in piglets can be evaluated by detecting PEDV S1 IgG antibodies in the serum of sows.In 10 PEDV-infected farms,the neutralizing antibodies to PEDV in the sera of sows after immunization were generally high,and the S1 IgG antibodies were also high,and their S/P values were higher than 3.5 in 66.9%of the farms(347/519),and the highest anti-body levels were found in the four farms in which PED did not occur,whereas the neutralizing an-tibodies in the immunized sows in the five PEDV-uninfected farms were generally low,and their S1 IgG antibodies were also low,and only 8.1%(13/161)having S/P values higher than 3.5.The re-sults suggest that most sows in PEDV-infected farms can provide good immunoprotection to pig-lets after immunization,while pigs in PEDV-uninfected farms need further immunization if they need to achieve a higher level of immunoprotection.The present study provides a substantial clini-cal basis for the use of PEDV S1 IgG antibody levels to assess the effectiveness of PEDV antibody protection in swine herds.
6.Effect of Ginkgo biloba extract on improving hepatic insulin resistance induced by arsenic exposure based on network pharmacology
Zhida HU ; Shiqing XU ; Ruru MENG ; Yanfeng JIA ; Qiyao ZHANG ; Bohao BIAN ; Shurui WANG ; Yang LIU ; Li WANG ; Yanrong GAO
Journal of Environmental and Occupational Medicine 2024;41(7):751-759
Background Arsenic exposure is a common and important environmental and occupational hazardous factor in China, and arsenic-induced insulin resistance (IR) has attracted widespread attention as a negative health outcome to the population. Objective To explore part of the mechanism of hepatic IR induced by arsenic exposure based on the peroxisome proliferators-activated receptors γ (PPARγ)/ glucose transporter 4 (GLUT4) pathway, and to investigate potential effects of Ginkgo biloba extract (GBE) on hepatic IR induced by arsenic exposure and associated mechanism of action. Methods The target of drug action was predicted by network pharmacology and verified by in vivo and in vitro experiments. In vivo experiments: 48 SPF C57BL/6J male mice were divided into 4 groups, including control group, 50 mg·L−1 NaAsO2 model group (NaAsO2), 50 mg·L−1 NaAsO2+10 mg·kg−1 GBE intervene group (NaAsO2+GBE), and 10 mg·kg−1 GBE group (GBE), 12 mice in each group. The animals were given free access to purified water containing 50 mg·L−1 NaAsO2, or given intraperitoneal injection of normal saline containing 10 mg·kg−1 GBE once per week. After 6 months of exposure, blood glucose detection, intraperitoneal glucose tolerance test (IPGTT), and insulin tolerance test (ITT) were performed. Serum and liver tissues were collected after the mice were neutralized, liver histopathological sections were obtained, serum insulin levels, liver tissue glycogen content, glucose content were detected by enzyme linked immunosorbent assay (ELISA), and the expression of PPARγ and GLUT4 proteins was detected by Western blot (WB). In vitro experiments: HepG2 cells were divided into 4 groups, including control group, 8 μmol·L−1 NaAsO2 group (NaAsO2), 8 μmol·L−1 NaAsO2 + 200 mg·L−1 GBE intervene group (NaAsO2+GBE), and 200 mg·L−1 GBE group (GBE). The levels of glycogen and glucose were detected by ELISA, and the expression of PPARγ and GLUT4 proteins was detected by WB. Results A strong binding effect between GBE and PPARγ was revealed by network pharmacology. In in vivo experiments, the NaAsO2 group exhibited an elevated blood glucose compared to the control group, and the NaAsO2+GBE group showed a decreased blood glucose compared to the NaAsO2 group (P<0.01). The histopathological sections indicated severe liver structural damage in the arsenic exposure groups (NaAsO2 group and NaAsO2+GBE group), with varying staining intensity, partial liver cell necrosis, and diffuse red blood cell appearance. Both results of in vitro and in vivo experiments showed a decrease in glycogen synthesis and glucose uptake in the NaAsO2 groups compared to the control groups, which was alleviated in the NaAsO2+GBE group (P<0.01). The results of WB revealed inhibited PPARγ expression and reduced GLUT4 levels on the cell membrane, and all these changes were alleviated in the NaAsO2+GBE group (P<0.01). Conclusion This study findings suggest that GBE antagonizes arsenic exposure-induced hepatic IR by regulating the PPARγ/GLUT4 pathway, indicating that GBE has a protective effect on arsenic exposure-induced hepatic IR, and PPARγ may be a potential therapeutic target for arsenic exposure-induced hepatic IR.
7.Chemical approaches for the stereocontrolled synthesis of 1,2-cis-β-D-rhamnosides.
Juntao CAI ; Xin YUAN ; Yuanfang KONG ; Yulong HU ; Jieming LI ; Shiqing JIANG ; Chunhong DONG ; Kan DING
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):886-901
In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-β-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain β-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of β-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in β-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.
Glycosides
;
Mannosides
;
Glycosylation
;
Stereoisomerism
8.MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling
Shiqing ZHANG ; Peng SUN ; Xinru XIAO ; Yujie HU ; Yan QIAN ; Qian ZHANG
The Korean Journal of Physiology and Pharmacology 2022;26(4):239-253
Epithelial-mesenchymal transition (EMT ) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.
9.Clinical guideline for spinal reconstruction of osteoporotic thoracolumbar fracture in elderly patients (version 2022)
Tao SUI ; Jian CHEN ; Zhenfei HUANG ; Zhiyi HU ; Weihua CAI ; Lipeng YU ; Xiaojian CAO ; Wei ZHOU ; Qingqing LI ; Jin FAN ; Qian WANG ; Pengyu TANG ; Shujie ZHAO ; Lin CHEN ; Zhiming CUI ; Wenyuan DING ; Shiqing FENG ; Xinmin FENG ; Yanzheng GAO ; Baorong HE ; Jianzhong HUO ; Haijun LI ; Jun LIU ; Fei LUO ; Chao MA ; Zhijun QIAO ; Qiang WANG ; Shouguo WANG ; Xiaotao WU ; Nanwei XU ; Jinglong YAN ; Zhaoming YE ; Feng YUAN ; Jishan YUAN ; Jie ZHAO ; Xiaozhong ZHOU ; Mengyuan WU ; Yongxin REN ; Guoyong YIN
Chinese Journal of Trauma 2022;38(12):1057-1066
Osteoporotic thoracolumbar fracture in the elderly will seriously reduce their quality of life and life expectancy. For osteoporotic thoracolumbar fracture in the elderly, spinal reconstruction is necessary, which should comprehensively consider factors such as the physical condition, fracture type, clinical characteristics and osteoporosis degree. While there lacks relevant clinical norms or guidelines on selection of spinal reconstruction strategies. In order to standardize the concept of spinal reconstruction for osteoporotic thoracolumbar fracture in the elderly, based on the principles of scientificity, practicality and progressiveness, the authors formulated the Clinical guideline for spinal reconstruction of osteoporotic thoracolumbar fracture in elderly patients ( version 2022), in which suggestions based on evidence of evidence-based medicine were put forward upon 10 important issues related to the fracture classification, non-operative treatment strategies and surgical treatment strategies in spinal reconstruction after osteoporosis thoracolumbar fracture in the elderly, hoping to provide a reference for clinical treatment.
10.Effect of a double-buffered diagnosis and treatment model for emergency orthopedic trauma patients during pandemic of corona virus disease 2019
Yan ZHOU ; Yaming LI ; Jianghua MING ; Shiqing LIU ; Qing CHEN ; Yonggang MA ; Geliang HU ; Ming DENG ; Qi LIAO ; Zhonghui CHEN ; Zhe WANG ; Hao PENG
Chinese Journal of Trauma 2020;36(3):193-196
During pandemic of corona virus disease 2019 (COVID-19), emergency orthopedic trauma is commonly seen. It is particularly important to ensure the emergency treatment quality of orthopedic trauma but avoid cross-infection between doctors and patients. The double-buffered diagnosis and treatment mode refers to the model of patients first undergoing medical observation in the comprehensive buffer ward and the inpatient buffer rooms of various disciplines after admission to confirm the exclusion of COVID-19 and then receiving specialist diagnosis and treatment. The authors summarize the experiences of using the double-buffered diagnosis and treatment model in the Department of Orthopedics, Renmin Hospital of Wuhan University during the prevention and control of COVID-19 pandemic so as to provide a reference for treatment of orthopedic patients.

Result Analysis
Print
Save
E-mail