1.Study on the pharmacological effects and mechanism of Gegen-Zhimu herb pair in preventing and treating Alzheimer's disease by UHPLC-Q/TOF-MS metabolomics strategy
Liang CHAO ; Hui WANG ; Shuqi SHEN ; Piaoxue YOU ; Kaihong JI ; Zhanying HONG
Journal of Pharmaceutical Practice and Service 2025;43(1):30-40
Objective To evaluate the efficacy of Puerariae lobatae radix (PLR) and Anemarrhenae Rhizoma (AR) in preventing and treating Alzheimer’s disease (AD) and explore its potential mechanism of action by LC-MS serum metabolomics strategy. Methods The AD rat model was established by administering aluminum chloride (AlCl3) and D-galactose (D-gal) for 20 weeks. The traditional Chinese medicine intervention group was given the PLR, AR, and PLR-AR extracts for 8 weeks by gavage. The model effect and efficacy were evaluated by Morris water maze test and biochemical indicators including SOD, NO, and MDA; Metabolomics research based on the UHPLC-Q/TOF-MS method was conducted, and relevant metabolic pathways were analyzed through the MetaboAnalyst online website. Results The learning and memory abilities of AD model rats were significantly decreased compared with the control group, and the levels of oxidative stress and lipid peroxides were significantly increased (P<0.05), while the SOD content was decreased considerably (P<0.01). The learning and memory abilities of AD model rats were improved, oxidative stress and lipid peroxidation levels were reversed, and serum SOD content was increased significantly after the intervention of PLR-AR, with better effects than single drugs. Through metabolomics, 70 differential metabolites were identified between the AD model group and the control group, mainly involving 10 pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and unsaturated fatty acid biosynthesis, et.al. The intervention of PLR-AR could adjust 47 metabolites, with 20 metabolites showing significant differences (P<0.05). The significantly adjusted metabolites involve 6 pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, et al. Conclusion The combination of PLR and AR could significantly improve the learning and memory abilities of AD rat models. The mechanism may be related to the improvement of oxidative stress and lipid peroxidation levels, the increase of serum SOD content, and the regulation of phenylalanine, tyrosine, and tryptophan biosynthesis pathways.
2.Spicy food consumption and risk of vascular disease: Evidence from a large-scale Chinese prospective cohort of 0.5 million people.
Dongfang YOU ; Dianjianyi SUN ; Ziyu ZHAO ; Mingyu SONG ; Lulu PAN ; Yaqian WU ; Yingdan TANG ; Mengyi LU ; Fang SHAO ; Sipeng SHEN ; Jianling BAI ; Honggang YI ; Ruyang ZHANG ; Yongyue WEI ; Hongxia MA ; Hongyang XU ; Canqing YU ; Jun LV ; Pei PEI ; Ling YANG ; Yiping CHEN ; Zhengming CHEN ; Hongbing SHEN ; Feng CHEN ; Yang ZHAO ; Liming LI
Chinese Medical Journal 2025;138(14):1696-1704
BACKGROUND:
Spicy food consumption has been reported to be inversely associated with mortality from multiple diseases. However, the effect of spicy food intake on the incidence of vascular diseases in the Chinese population remains unclear. This study was conducted to explore this association.
METHODS:
This study was performed using the large-scale China Kadoorie Biobank (CKB) prospective cohort of 486,335 participants. The primary outcomes were vascular disease, ischemic heart disease (IHD), major coronary events (MCEs), cerebrovascular disease, stroke, and non-stroke cerebrovascular disease. A Cox proportional hazards regression model was used to assess the association between spicy food consumption and incident vascular diseases. Subgroup analysis was also performed to evaluate the heterogeneity of the association between spicy food consumption and the risk of vascular disease stratified by several basic characteristics. In addition, the joint effects of spicy food consumption and the healthy lifestyle score on the risk of vascular disease were also evaluated, and sensitivity analyses were performed to assess the reliability of the association results.
RESULTS:
During a median follow-up time of 12.1 years, a total of 136,125 patients with vascular disease, 46,689 patients with IHD, 10,097 patients with MCEs, 80,114 patients with cerebrovascular disease, 56,726 patients with stroke, and 40,098 patients with non-stroke cerebrovascular disease were identified. Participants who consumed spicy food 1-2 days/week (hazard ratio [HR] = 0.95, 95% confidence interval [95% CI] = [0.93, 0.97], P <0.001), 3-5 days/week (HR = 0.96, 95% CI = [0.94, 0.99], P = 0.003), and 6-7 days/week (HR = 0.97, 95% CI = [0.95, 0.99], P = 0.002) had a significantly lower risk of vascular disease than those who consumed spicy food less than once a week ( Ptrend <0.001), especially in those who were younger and living in rural areas. Notably, the disease-based subgroup analysis indicated that the inverse associations remained in IHD ( Ptrend = 0.011) and MCEs ( Ptrend = 0.002) risk. Intriguingly, there was an interaction effect between spicy food consumption and the healthy lifestyle score on the risk of IHD ( Pinteraction = 0.037).
CONCLUSIONS
Our findings support an inverse association between spicy food consumption and vascular disease in the Chinese population, which may provide additional dietary guidance for the prevention of vascular diseases.
Humans
;
Male
;
Female
;
Prospective Studies
;
Middle Aged
;
Aged
;
Vascular Diseases/etiology*
;
Risk Factors
;
China/epidemiology*
;
Adult
;
Proportional Hazards Models
;
Cerebrovascular Disorders/epidemiology*
;
East Asian People
3.Precision therapy targeting CAMK2 to overcome resistance to EGFR inhibitors in FAT1 -mutated oral squamous cell carcinoma.
Yumeng LIN ; Yibo HUANG ; Bowen YANG ; You ZHANG ; Ning JI ; Jing LI ; Yu ZHOU ; Ying-Qiang SHEN ; Qianming CHEN
Chinese Medical Journal 2025;138(15):1853-1865
BACKGROUND:
Oral squamous cell carcinoma (OSCC) is a prevalent type of cancer with a high mortality rate in its late stages. One of the major challenges in OSCC treatment is the resistance to epidermal growth factor receptor (EGFR) inhibitors. Therefore, it is imperative to elucidate the mechanism underlying drug resistance and develop appropriate precision therapy strategies to enhance clinical efficacy.
METHODS:
To evaluate the efficacy of the combination of the Ca 2+ /calmodulin-dependent protein kinase II (CAMK2) inhibitor KN93 and EGFR inhibitors, we performed in vitro and in vivo experiments using two FAT atypical cadherin 1 ( FAT1 )-deficient (SCC9 and SCC25) and two FAT1 wild-type (SCC47 and HN12) OSCC cell lines. We assessed the effects of EGFR inhibitors (afatinib or cetuximab), KN93, or their combination on the malignant phenotype of OSCC in vivo and in vitro . The alterations in protein expression levels of members of the EGFR signaling pathway and SRY-box transcription factor 2 (SOX2) were analyzed. Changes in the yes-associated protein 1 (YAP1) protein were characterized. Moreover, we analyzed mitochondrial dysfunction. Besides, the effects of combination therapy on mitochondrial dynamics were also evaluated.
RESULTS:
OSCC with FAT1 mutations exhibited resistance to EGFR inhibitors treatment. The combination of KN93 and EGFR inhibitors significantly inhibited the proliferation, survival, and migration of FAT1 -mutated OSCC cells and suppressed tumor growth in vivo . Mechanistically, combination therapy enhanced the therapeutic sensitivity of FAT1 -mutated OSCC cells to EGFR inhibitors by modulating the EGFR pathway and downregulated tumor stemness-related proteins. Furthermore, combination therapy induced reactive oxygen species (ROS)-mediated mitochondrial dysfunction and disrupted mitochondrial dynamics, ultimately resulting in tumor suppression.
CONCLUSION
Combination therapy with EGFR inhibitors and KN93 could be a novel precision therapeutic strategy and a potential clinical solution for EGFR-resistant OSCC patients with FAT1 mutations.
Humans
;
ErbB Receptors/metabolism*
;
Mouth Neoplasms/metabolism*
;
Cell Line, Tumor
;
Animals
;
Drug Resistance, Neoplasm/genetics*
;
Cadherins/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Mice
;
Mutation/genetics*
;
Mice, Nude
;
Protein Kinase Inhibitors/therapeutic use*
;
Cetuximab/pharmacology*
;
Afatinib/therapeutic use*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
4.Pien Tze Huang Attenuates Cell Proliferation and Stemness Promoted by miR-483-5p in Hepatocellular Carcinoma Cells.
Li-Hui WEI ; Xi CHEN ; A-Ling SHEN ; Yi FANG ; Qiu-Rong XIE ; Zhi GUO ; Thomas J SFERRA ; You-Qin CHEN ; Jun PENG
Chinese journal of integrative medicine 2025;31(9):782-791
OBJECTIVE:
To investigate the effect of miR-483-5p on hepatocellular carcinoma (HCC) cells proliferation and stemness, as well as the attenuating effect of Pien Tze Huang (PZH).
METHODS:
Differentially expressed miRNA between HepG2 cells and hepatic cancer stem-like cells (HCSCs) were identified by a miRNA microarray assay. miR-483-5p mimics were transfected into HepG2 cells to explore the effects of miR-483-5p on cell proliferation and stemness. HepG2 cells and HCSCs were treated with PZH (0, 0.25, 0.50 and 0.75 mg/mL) to explore the effects of PZH on the proliferation and stemness, both in non-induced state and the state induced by miR-483-5p mimics.
RESULTS:
miR-483-5p was significantly up-regulated in HCSCs and its overexpression increased cell proliferation and stemness in HepG2 cells (P<0.05). PZH not only significantly inhibited proliferation in HepG2 cells, but also significantly suppressed the cell proliferation and self-renewal of HCSCs (P<0.05). The effects of miR-483-5p mimics on proliferation and stemness of HepG2 cells were partially abolished by PZH.
CONCLUSIONS
miR-483-5p promotes proliferation and enhances stemness of HepG2 cells, which were attenuated by PZH, demonstrating that miR-483-5p is a potential molecular target for the treatment of HCC and provide experimental evidence to support clinical use of PZH for patients with HCC.
Humans
;
MicroRNAs/metabolism*
;
Cell Proliferation/drug effects*
;
Liver Neoplasms/drug therapy*
;
Carcinoma, Hepatocellular/drug therapy*
;
Hep G2 Cells
;
Neoplastic Stem Cells/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Gene Expression Regulation, Neoplastic/drug effects*
5.Long-chain acylcarnitine deficiency promotes hepatocarcinogenesis.
Kaifeng WANG ; Zhixian LAN ; Heqi ZHOU ; Rong FAN ; Huiyi CHEN ; Hongyan LIANG ; Qiuhong YOU ; Xieer LIANG ; Ge ZENG ; Rui DENG ; Yu LAN ; Sheng SHEN ; Peng CHEN ; Jinlin HOU ; Pengcheng BU ; Jian SUN
Acta Pharmaceutica Sinica B 2025;15(3):1383-1396
Despite therapy with potent antiviral agents, chronic hepatitis B (CHB) patients remain at high risk of hepatocellular carcinoma (HCC). While metabolites have been rediscovered as active drivers of biological processes including carcinogenesis, the specific metabolites modulating HCC risk in CHB patients are largely unknown. Here, we demonstrate that baseline plasma from CHB patients who later developed HCC during follow-up exhibits growth-promoting properties in a case-control design nested within a large-scale, prospective cohort. Metabolomics analysis reveals a reduction in long-chain acylcarnitines (LCACs) in the baseline plasma of patients with HCC development. LCACs preferentially inhibit the proliferation of HCC cells in vitro at a physiological concentration and prevent the occurrence of HCC in vivo without hepatorenal toxicity. Uptake and metabolism of circulating LCACs increase the intracellular level of acetyl coenzyme A, which upregulates histone H3 Lys14 acetylation at the promoter region of KLF6 gene and thereby activates KLF6/p21 pathway. Indeed, blocking LCAC metabolism attenuates the difference in KLF6/p21 expression induced by baseline plasma of HCC/non-HCC patients. The deficiency of circulating LCACs represents a driver of HCC in CHB patients with viral control. These insights provide a promising direction for developing therapeutic strategies to reduce HCC risk further in the antiviral era.
6.Silencing PTPN2 with nanoparticle-delivered small interfering RNA remodels tumor microenvironment to sensitize immunotherapy in hepatocellular carcinoma.
Fu WANG ; Haoyu YOU ; Huahua LIU ; Zhuoran QI ; Xuan SHI ; Zhiping JIN ; Qingyang ZHONG ; Taotao LIU ; Xizhong SHEN ; Sergii RUDIUK ; Jimin ZHU ; Tao SUN ; Chen JIANG
Acta Pharmaceutica Sinica B 2025;15(6):2915-2929
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is a promising target for sensitizing solid tumors to immune checkpoint blockades. However, the highly polar active sites of PTPN2 hinder drug discovery efforts. Leveraging small interfering RNA (siRNA) technology, we developed a novel glutathione-responsive nano-platform HPssPT (HA/PEIss@siPtpn2) to silence PTPN2 and enhance immunotherapy efficacy in hepatocellular carcinoma (HCC). HPssPT showed potent transfection and favorable safety profiles. PTPN2 deficiency induced by HPssPT amplified the interferon γ signaling in HCC cells by increasing the phosphorylation of Janus-activated kinase 1 and signal transducer and activator of transcription 1, resulting in enhanced antigen presentation and T cell activation. The nano-platform was also able to promote the M1-like polarization of macrophages in vitro. The unique tropism of HPssPT towards tumor-associated macrophages, facilitated by hyaluronic acid coating and CD44 receptor targeting, allowed for simultaneous reprogramming of both tumor cells and tumor-associated macrophages, thereby synergistically reshaping tumor microenvironment to an immunostimulatory state. In HCC, colorectal cancer, and melanoma animal models, HPssPT monotherapy provoked robust antitumor immunity, thereby sensitizing tumors to PD-1 blockade, which provided new inspiration for siRNA-based drug discovery and tumor immunotherapy.
7.Associations of Genetic Risk and Physical Activity with Incident Chronic Obstructive Pulmonary Disease: A Large Prospective Cohort Study.
Jin YANG ; Xiao Lin WANG ; Wen Fang ZHONG ; Jian GAO ; Huan CHEN ; Pei Liang CHEN ; Qing Mei HUANG ; Yi Xin ZHANG ; Fang Fei YOU ; Chuan LI ; Wei Qi SONG ; Dong SHEN ; Jiao Jiao REN ; Dan LIU ; Zhi Hao LI ; Chen MAO
Biomedical and Environmental Sciences 2025;38(10):1194-1204
OBJECTIVE:
To investigate the relationship between physical activity and genetic risk and their combined effects on the risk of developing chronic obstructive pulmonary disease.
METHODS:
This prospective cohort study included 318,085 biobank participants from the UK. Physical activity was assessed using the short form of the International Physical Activity Questionnaire. The participants were stratified into low-, intermediate-, and high-genetic-risk groups based on their polygenic risk scores. Multivariate Cox regression models and multiplicative interaction analyses were used.
RESULTS:
During a median follow-up period of 13 years, 9,209 participants were diagnosed with chronic obstructive pulmonary disease. For low genetic risk, compared to low physical activity, the hazard ratios ( HRs) for moderate and high physical activity were 0.853 (95% confidence interval [ CI]: 0.748-0.972) and 0.831 (95% CI: 0.727-0.950), respectively. For intermediate genetic risk, the HRs were 0.829 (95% CI: 0.758-0.905) and 0.835 (95% CI: 0.764-0.914), respectively. For participants with high genetic risk, the HRs were 0.809 (95% CI: 0.746-0.877) and 0.818 (95% CI: 0.754-0.888), respectively. A significant interaction was observed between genetic risk and physical activity.
CONCLUSION
Moderate or high levels of physical activity were associated with a lower risk of developing chronic obstructive pulmonary disease across all genetic risk groups, highlighting the need to tailor activity interventions for genetically susceptible individuals.
Humans
;
Pulmonary Disease, Chronic Obstructive/epidemiology*
;
Exercise
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Aged
;
Genetic Predisposition to Disease
;
Risk Factors
;
United Kingdom/epidemiology*
;
Incidence
;
Adult
8.Biosensor analysis technology and its research progress in drug development of Alzheimer's disease
Shu-qi SHEN ; Jia-hao FANG ; Hui WANG ; Liang CHAO ; Piao-xue YOU ; Zhan-ying HONG
Acta Pharmaceutica Sinica 2024;59(3):554-564
Biosensor analysis technology is a kind of technology with high specificity that can convert biological reactions into optical and electrical signals. In the development of drugs for Alzheimer's disease (AD), according to different disease hypotheses and targets, this technology plays an important role in confirming targets and screening active compounds. This paper briefly describes the pathogenesis of AD and the current situation of therapeutic drugs, introduces three biosensor analysis techniques commonly used in the discovery of AD drugs, such as surface plasmon resonance (SPR), biolayer interferometry (BLI) and fluorescence analysis technology, explains its basic principle and application progress, and summarizes their advantages and limitations respectively.
9.Atrial fibrillation detection using millimeter-wave radar
Hengji ZHOU ; Yihan YANG ; Yuanhui HU ; Yuguang CHU ; Xintian SHOU ; Yaping YOU ; Wenjing XUE ; Shaowei FAN ; Yong WANG ; Huiliang SHEN
Chinese Journal of Medical Physics 2024;41(1):81-87
A novel technology is proposed for non-contact and real-time detection of atrial fibrillation using millimeter-wave radar.A 60 GHz PCR millimeter wave radar is used to continuously detect the chest echo signal of the subject.After signal acquisition,I-Q signal is generated through I-Q demodulation,and the signal phase information is extracted using effective points phase trend evaluation for obtaining the signals from oscillations in the chest wall,from which the respiratory signals and cardiac signals are extracted through digital filtering for the analysis of cardiac movement.Whether the atrial fibrillation occurs or not is determined by the characteristics of atrial fibrillation wave in the time domain.The effective points phase trend evaluation for extracting more accurate signal phase information and the time-domain method for real-time atrial fibrillation detection are the innovations of the study.The experimental results show that the proposed method achieves a detection accuracy of 99.2%in clinic.
10.Advances in the construction of models and applications of Alzheimer's disease based on microfluidic chips
Piao-xue YOU ; Lan CHEN ; Shu-qi SHEN ; Liang CHAO ; Hui WANG ; Zhan-ying HONG
Acta Pharmaceutica Sinica 2024;59(6):1569-1581
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with dysfunctions related to thinking, learning, and memory of the brain. AD has multiple pathological characteristics with complicated causes, constructing a suitable pathological model is crucial for the research of AD. Microfluidic chip technology integrates multiple functional units on a chip, which can realize microenvironmental control similar to the physiological environment. It is well applied in the construction of pathological model, early diagnosis as well as drug screening of AD. This paper focuses on the construction of AD microfluidic chips model from the perspective of cell type, culture formats and the chips structure as well as the research progress of microfluidic chips in AD application based on the pathological characteristics of AD, which will provide a reference for further elucidation of AD mechanism and drug development.

Result Analysis
Print
Save
E-mail