1.Association between ambient ozone exposure during pregnancy and risk of preterm birth in Guangdong Province
Peng HU ; Shanshan RAN ; Qingmei LIN ; Yin YANG ; Zilong ZHANG ; Xiaoling GUO ; Yonggui GAO ; Jinde ZHAO ; Hualiang LIN
Journal of Environmental and Occupational Medicine 2025;42(4):379-384
Background Air pollution exposure has a significant impact on maternal and child health. However, the research on the association between ambient ozone (O3) exposure during pregnancy and the risk of premature birth in newborns is limited, and the conclusions are inconsistent. Objective To investigate the association of ambient O3 exposure during pregnancy with the risk of preterm birth in Guangdong Province. Methods Data of pregnant women in Guangzhou from 2013 to 2019 and Foshan from 2018 to 2023 were collected, and O3 concentrations during different trimesters were assessed according to maternal residential addresses. Bilinear interpolation was used to evaluate the concentrations of air pollution. A cohort study design was adopted in our study. Restricted cubic spline curves were used to evaluate the exposure-response relationship between O3 exposure and preterm birth risk and explore potential exposure threshold of O3. Logistic regression models were used to evaluate the association of O3 exposure with preterm birth. Results A total of 702 924 pregnant women were included in this study, of whom 43 051 (6.12%) were preterm. The average O3 exposure concentrations of pregnant women during the first, second, third, and whole trimesters were 95.51, 97.51, 100.60, and 97.87 μg·m−3, respectively. We observed J-shaped associations between O3 exposure and preterm birth risk during the second, third, and whole trimesters of pregnancy using restricted cubic spline curves. This study found that there were threshold concentrations between O3 exposure and preterm birth risk during different gestational periods, and the threshold concentrations in the first, second, third, and whole trimesters were 112.32, 99.83, 111.74, and 112.46 μg·m−3, respectively. During the second, third, and whole trimesters of pregnancy, after adjusting for maternal age, baby sex, pre-pregnancy body mass index, mode of delivery, baby birth weight, gestational diabetes, and gestational hypertension, the odds ratios (OR) of preterm birth were 1.02 (95%CI: 1.01, 1.04), 1.02 (95%CI: 1.00, 1.03), and 1.17 (95%CI: 1.13, 1.21) for each 10 μg·m−3 increase in O3 concentration above the O3 threshold. No significant association was found between O3 exposure and the risk of preterm birth during the first trimester. Conclusion There is a nonlinear association between the risk of preterm birth and O3 exposure during pregnancy, and higher concentrations of O3 exposure during pregnancy are associated with the risk of preterm birth. Above the O3 threshold concentration during pregnancy, especially during the second, third, and whole trimesters, the risk of preterm birth elevates with the increase of O3 exposure concentrations.
2.Ethical and legal review of single women in the application of assisted reproductive technology
Yang LI ; Jiaze LI ; Shanshan SUN ; Jun ZHANG
Chinese Medical Ethics 2025;38(5):642-646
Assisted reproductive technology (ART) can address the issues faced by infertile couples and help families achieve their desine to have children. Starting from both theoretical and practical basis, this paper introduced a discussion on the legitimacy of ART application for single women. The challenges encountered by single women in ART application were objectively analyzed, including untimely legislation, unclear applicable subjects, the commodification of sperm and eggs, inadequate institutional guarantees, and insufficient safeguarding of offspring’s rights and interests, etc. This paper proposed solutions to the problems encountered by single women in ART application, including adhering to the relevant principles, strengthening legislative norms, clarifying the applicable subjects, providing institutional guarantees, safeguarding the offspring’s rights and interests, and seeking a balance between ethics and law. It aimed to provide references for related wrok, assisting single women in achieving a balance between ethics and law in ART application and protecting the reproductive rights of single women to the greatest extent.
3.Aberrant fragmentomic features of circulating cell-free mitochondrial DNA enable early detection and prognosis prediction of hepatocellular carcinoma
Yang LIU ; Fan PENG ; Siyuan WANG ; Huanmin JIAO ; Kaixiang ZHOU ; Wenjie GUO ; Shanshan GUO ; Miao DANG ; Huanqin ZHANG ; Weizheng ZHOU ; Xu GUO ; Jinliang XING
Clinical and Molecular Hepatology 2025;31(1):196-212
Background/Aims:
Early detection and effective prognosis prediction in patients with hepatocellular carcinoma (HCC) provide an avenue for survival improvement, yet more effective approaches are greatly needed. We sought to develop the detection and prognosis models with ultra-sensitivity and low cost based on fragmentomic features of circulating cell free mtDNA (ccf-mtDNA).
Methods:
Capture-based mtDNA sequencing was carried out in plasma cell-free DNA samples from 1168 participants, including 571 patients with HCC, 301 patients with chronic hepatitis B or liver cirrhosis (CHB/LC) and 296 healthy controls (HC).
Results:
The systematic analysis revealed significantly aberrant fragmentomic features of ccf-mtDNA in HCC group when compared with CHB/LC and HC groups. Moreover, we constructed a random forest algorithm-based HCC detection model by utilizing ccf-mtDNA fragmentomic features. Both internal and two external validation cohorts demonstrated the excellent capacity of our model in distinguishing early HCC patients from HC and highrisk population with CHB/LC, with AUC exceeding 0.983 and 0.981, sensitivity over 89.6% and 89.61%, and specificity over 98.20% and 95.00%, respectively, greatly surpassing the performance of alpha-fetoprotein (AFP) and mtDNA copy number. We also developed an HCC prognosis prediction model by LASSO-Cox regression to select 20 fragmentomic features, which exhibited exceptional ability in predicting 1-year, 2-year and 3-year survival (AUC=0.8333, 0.8145 and 0.7958 for validation cohort, respectively).
Conclusions
We have developed and validated a high-performing and low-cost approach in a large clinical cohort based on aberrant ccf-mtDNA fragmentomic features with promising clinical translational application for the early detection and prognosis prediction of HCC patients.
4.Improvement effects of pachymic acid on myocardial injury in coronary heart disease rats by regulating mito-chondrial autophagy mediated by the PINK1/Parkin signaling pathway
Jian XIE ; Bo GAO ; Shanshan LIANG ; Qing YANG ; Siyan GUO ; Longjia GONG
China Pharmacy 2025;36(18):2267-2272
OBJECTIVE To explore whether pachymic acid (Pac) regulates mitochondrial autophagy mediated by the PTEN- induced kinase 1 (PINK1)/Parkin RBR E3 ubiquitin-protein ligase (Parkin) signaling pathway to alleviate myocardial injury in coronary heart disease (CHD) rats. METHODS SD rats were divided into control (Con) group, CHD group, Pac low-dose group (Pac-L group), Pac high-dose group (Pac-H group), Pac-H+PINK1/Parkin signaling pathway inhibitor group (Pac-H+3-MA group), with 10 rats in each group. Except for the Con group, CHD models were established in the remaining groups of rats. After successful modeling, the rats in each group were intraperitoneally injected with the corresponding drugs or normal saline. After continuous intervention for 4 weeks, the left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and mean arterial pressure (MAP) of the rats were detected. The levels of creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) in the serum, as well as the levels of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), IL-1β, reactive oxygen species (ROS), malondialdehyde (MDA) in the myocardial tissue, and the activities of catalase (CAT) and superoxide dismutase (SOD), as well as the expression levels of p62, cleaved caspase-3, Parkin, PINK1 proteins and the ratio of microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ)/LC3Ⅰ ratio were measured. The morphology of myocardial tissue and mitochondrial autophagic vesicles were observed, and the number of mitochondrial autophagic vesicles per unit area and the rate of cardiomyocyte apoptosis were counted. RESULTS Compared with CHD group, LVEF, MAP, IL-10 levels, CAT and SOD activities, p62, Parkin, PINK1 protein expressions, LC3Ⅱ/LC3Ⅰ ratio, the numbers of mitochondrial autophagic vesicles per unit area in the Pac-L and Pac-H E-mail:hzdpft@163.com groups were increased significantly (P<0.05); the levels of LVEDV, LVESV, CK-MB, LDH, cTnI, cTnT, TNF-α, IL-1β, ROS and MDA, cell apoptosis rates, and protein expression of cleaved caspase-3 were all decreased significantly (P<0.05); and the changes in various indicators were more pronounced in the Pac-H group (P<0.05); both groups showed varying degree of improvement in myocardial histopathological morphology. Compared with the Pac-H group, the aforementioned indicators in rats from the Pac-H+3-MA group were all significantly reversed (P<0.05). CONCLUSIONS Pac may promote mitochondrial autophagy in cardiomyocytes of CHD rats by activating the PINK1/ Parkin signaling pathway, thereby reducing inflammatory responses and oxidative stress and improving myocardial injury.
5.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
6.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
7.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
8.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
9.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
10.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.

Result Analysis
Print
Save
E-mail