1.Research progress on non-surgical treatment of intermittent exotropia
International Eye Science 2026;26(1):91-95
Intermittent exotropia(IXT)is the most prevalent form of childhood strabismus, with an estimated prevalence of approximately 3.26% in the Chinese population. Although patients can intermittently maintain orthotropia, the deviation angle often fluctuates markedly, and frank exotropia may become evident during fatigue or lapses in attention. Without intervention, roughly 75% of cases progress over time. Management comprises surgical and non-surgical approaches. Surgery remains the most definitive treatment, however, the optimal timing is controversial, and postoperative outcomes may include under- or over-correction, necessitating additional procedures. Non-surgical options include observation, refractive correction, over-minus lens therapy, prisms, orthoptic exercises, and botulinum toxin-A injections. These modalities are particularly suitable for young, or uncooperative children, patients with small-angle, well-controlled deviations, or those seeking to defer surgery, in such cases, non-surgical treatment can maintain binocular alignment and preserve monocular function, thereby delaying or avoiding surgery. Because the efficacy of each non-surgical strategy varies, this review summarizes the current evidence on non-surgical treatment of IXT.
2.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
3.Multicenter machine learning-based construction of a model for predicting potential organ donors and validation with decision curve analysis
Xu WANG ; Wenxiu LI ; Fenghua WANG ; Shuli WU ; Dong JIA ; Xin GE ; Zhihua SHAN ; Tongzuo LI
Organ Transplantation 2026;17(1):106-115
Objective To evaluate the predictive value of different machine learning models constructed in a multicenter environment for potential organ donors and verify their clinical application feasibility. Methods The study included 2 000 inpatients admitted to five domestic tertiary hospitals from January 2020 to December 2023, who met the criteria for potential organ donation assessment. They were randomly divided into a training set and an internal validation set (7∶3). Another 300 similar patients admitted to the First Affiliated Hospital of Harbin Medical University from January 2024 to April 2025 were included as an external validation set. The area under the curve (AUC), sensitivity, specificity, accuracy and F1-score of three models were compared, and the consistency of the potential organ donor determination process was tested. Multivariate logistic regression analysis was used to identify predictive factors of potential organ donors. Decision curve analysis (DCA) was employed to verify the resource efficiency of each model, and the threshold interval and intervention balance point were assessed. Results Apart from age, there were no significant differences in other basic characteristics among the centers (all P>0.05). The consistency of the potential organ donor determination process among researchers in each center was good [all 95% confidence interval (CI) lower limits >0]. In the internal validation set, the XGBoost model had the best predictive performance (AUC=0.92, 95% CI 0.89-0.94) and the best calibration (P=0.441, Brier score 0.099). In the external validation set, the XGBoost model also had the best predictive performance (AUC=0.91, 95% CI 0.88-0.94), outperforming logistic regression and random forest models. Multivariate logistic regression showed that mechanical ventilation had the greatest impact (odds ratio=2.06, 95% CI 1.54-2.76, P<0.001). DCA indicated that the XGBoost model had the highest net benefit in the threshold interval of 0.2-0.6. The “treat all” strategy only had a slight advantage at extremely low thresholds. The recommended threshold interval, which balances intervention costs and clinical benefits, considers ≥50% positive predictive value (PPV) and ≤50 referrals per 100 high-risk patients. Conclusions The XGBoost model established in a multicenter environment is accurate and well-calibrated in predicting potential organ donors. Combined with DCA, it may effectively guide the timing of clinical interventions and resource allocation, providing new ideas for the assessment and management of organ donation after brain death.
4.Improvement effects and mechanism of astragaloside Ⅳ on neuroinflammation
Mimi WANG ; Yonggang FENG ; Yun HAN ; Kaixin SHAN ; Fuyu LIU ; Mingsan MIAO ; Xiaoyan FANG
China Pharmacy 2026;37(1):30-35
OBJECTIVE To investigate the improvement effects and mechanism of astragaloside Ⅳ (AS- Ⅳ ) on lipopolysaccharide (LPS)-induced neuroinflammation. METHODS BV2 cells were divided into control group, LPS group, AS-Ⅳ groups at concentrations of 20 and 40 μmol/L, and dexamethasone group (2 μmol/L). Except for control group, neuroinflammation model was established with LPS (1 μg/mL) in other groups after medication. The levels of inflammatory factors [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO)] in cell supernatant were measured in each group. Mice were randomly divided into normal group, model group, positive control group (Aspirin enteric-coated tablet, 20 mg/kg), AS-Ⅳ low- and high-dose groups (10, 20 mg/kg), with 6 mice in each group. Mice in each group were administered the corresponding drug/normal saline via gavage/intraperitoneal injection, once a day, for 14 consecutive days. Except for normal group, other groups were intraperitoneally injected with LPS (250 μg/kg) 1 hour after daily administration of the drug/normal saline to establish neuroinflammation model. Serum levels of IL-6 and TNF-α were measured 2 h after the last medication; histopathological morphology of cerebral tissue in mice were observed; the co-localization of inducible nitric oxide synthase (iNOS)/ionized calcium binding adapter molecule 1 (Iba1) and CD206/Iba1 in the cerebral cortex region of mice was observed; the expressions of proteins related to the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway in brain tissue of mice were also determined, including NF-κB p65, phosphorylated NF-κB p65(p-NF-κB p65), p38 MAPK, phosphorylated p38 MAPK (p-p38 MAPK), extracellular signal-regulated kinase (ERK), and phosphorylated ERK (p-ERK). RESULTS In the cell experiments, compared with control group, the levels of IL-6, TNF- α and NO in the cell supernatant of the LPS group were increased significantly (P<0.05); compared with LPS group, the levels of IL-6, TNF-α and NO were decreased significantly in the administration groups (P<0.05). In the animal experiments, compared with the normal group, the serum levels of IL-6 and TNF- α, the number of iNOS/Iba1 co-localization positive cells in the cerebral cortex, and the phosphorylation levels of p38 MAPK, NF- κB p65 and ERK proteins in brain tissue were all significantly increased/elevated in model group (P<0.05); the number of CD206/ Iba1 co-localization positive cells in the cerebral cortex region significantly decreased (P<0.05). The neurons in the cerebral cortex and the CA3 region of the hippocampus displayed a disordered arrangement. Compared with model group, above quantitative indexes of mice were all reversed significantly in administration groups (P<0.05); the neuronal cells in the cerebral cortex and the CA3 region of the hippocampus exhibited a relatively orderly arrangement. CONCLUSIONS AS-Ⅳ may inhibit the activation of the NF-κB/MAPK signaling pathway, promote the M2-type polarization of microglia, and thereby suppress neuroinflammatory responses.
5.Advances in polymorphisms of genes associated with oxaliplatin-induced peripheral neurotoxicity
China Pharmacy 2026;37(1):130-136
Peripheral neurotoxicity represents one of the most severe dose-limiting adverse reactions associated with oxaliplatin, with genetic polymorphisms playing a significant role in oxaliplatin-induced peripheral neuropathy (OIPN). OIPN can be categorized as acute or chronic based on onset timing. The former presents clinically as sensory abnormalities or even motor disorders, while the latter presents clinically as limb sensory disorders that persist, numbness or pain in the hands and feet. The transporter genes OCT2, OCTN2, and NHE1 may be implicated in OIPN; drug-metabolizing enzyme gene GSTP1 Ile105Val, DPYD rs1801265, voltage-gated sodium channel (NaV) gene SCN4A rs2302237, SCN9A rs6746030, SCN10A rs12632942, and other associated genes such as HLA-G rs1610696, rs371194629 and CCNH rs2230641, rs3093816 are associated with severe OIPN. Conversely, DNA repair-related gene XRCC1 rs23885, NaV gene SCN9A rs3750904, rs12478318 and rs6754031 are associated with reduced OIPN risk. In the future, the genetic research findings on OIPN can be translated into clinical applications, ultimately achieving individualized precision medicine for patients.
6.Mechanism of Paeoniae Radix Rubra and Aconiti Lateralis Radix Praeparata in Treatment of Acute-on-chronic Liver Failure Based on Bioinformation Analysis and Experimental Validation
Xiaoling TIAN ; Yu ZHANG ; Shan DU ; Mengsi WU ; Nianhua TAN ; Bin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):156-165
ObjectiveTo explore the mechanism of action of Paeoniae Radix Rubra and Aconiti Lateralis Radix Praeparata (CSFZ) in the treatment of acute-on-chronic liver failure (ACLF) through network pharmacology, molecular docking, and animal experiments. MethodsNetwork pharmacology was used to identify potential targets and related signaling pathways for the treatment of ACLF with CSFZ. Molecular docking was used to examine the binding activity of the core components with corresponding key targets. An ACLF rat model was established by subcutaneous and tail vein injections of bovine serum albumin combined with lipopolysaccharide (LPS) + D-galactosamine (D-GalN) intraperitoneal injection. A normal control group (NC), a model group, a CSFZ group (CSFZ, 5.85 g·kg-1), and a hepatocyte growth-promoting granule group (HGFG, 4.05 g·kg-1) were set up in this study. Pathological changes in rat liver tissue were observed using hematoxylin and eosin (HE) and Masson staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of interleukin-6 (IL-6), B-cell lymphoma-2 (Bcl-2), Caspase-3, and albumin (ALB). Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to measure the mRNA and protein expression levels of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated PI3K (p-PI3K), and phosphorylated Akt (p-Akt). ResultsNetwork pharmacology screening identified 49 active ingredients of CSFZ, 103 action targets, and 3 317 targets related to ACLF. Among these, 74 targets overlapped with CSFZ drug targets. Key nodes in the protein-protein interaction (PPI) network included Akt1, tumor necrosis factor (TNF), IL-6, Bcl-2, and Caspase-3. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified multiple signaling pathways, with the PI3K/Akt signaling pathway being the most frequent. Molecular docking showed that the core components of the drug exhibited good binding activity with the corresponding key targets. Animal experiments confirmed that CSFZ significantly improved liver tissue pathological damage in ACLF rats, reduced the release of inflammatory factors and liver cell apoptosis, and upregulated the expression levels of the PI3K/Akt signaling pathway. ConclusionThrough network pharmacology, molecular docking, and in vivo experiments, this study confirms the effect of CSFZ in reducing liver cell inflammatory damage and inhibiting liver cell apoptosis. The specific mechanism may be related to its involvement in regulating the PI3K/Akt signaling pathway.
7.Effect of Modified Shibaotang on Serum Sex Hormone Levels in Patients with Male Late-onset Hypogonadism of Kidney Essence Deficiency Syndrome Complicated with Diabetes Mellitus
Yi SHAN ; Shaokang CHEN ; Zhenfu SHI ; Haifeng XU ; Yi LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):227-233
ObjectiveTo observe the effect of modified Shibaotang on serum sex hormone levels in patients with male late-onset hypogonadism of kidney essence deficiency syndrome complicated with diabetes mellitus. MethodsA total of 60 patients with male late-onset hypogonadism of kidney essence deficiency syndrome complicated with diabetes mellitus,who met the inclusion criteria and were admitted to Yinchuan Hospital of Traditional Chinese Medicine from October 2022 to October 2023,were selected and randomly divided into an observation group and a control group,with 30 patients in each group. Both groups continued their original treatments,including blood glucose lowering and blood lipid regulation. The observation group was treated with modified Shibaotang,while the control group was treated with testosterone undecanoate capsules. The treatment lasted for 12 weeks. The changes in traditional Chinese medicine (TCM)syndrome scores,partial androgen deficiency in aging males (PADAM)symptom scores,glucose metabolism indexes [fasting plasma glucose (FPG),2-hour postprandial glucose (2 h PG),glycosylated hemoglobin (HbA1c)],and serum sex hormone indexes [sex hormone-binding globulin (SHBG),free testosterone (FT),total testosterone (TT),prolactin (PRL),luteinizing hormone (LH),follicle stimulating hormone (FSH),estrogen (E2)] were compared between the two groups before and after treatment. Safety was also evaluated. Results(1)Clinical efficacy comparison:After treatment,the clinical efficacy in both groups was similar,and there was no statistically significant difference between the two groups. (2)TCM syndrome score and PADAM symptom score comparison:After treatment,both groups showed a significant reduction in TCM syndrome scores and PADAM symptom scores (P<0.01),and the observation group showed a significantly greater reduction compared to the control group (P<0.05). (3)Glucose metabolism indexes comparison:After treatment,the levels of FPG,2 h PG,and HbA1c were significantly reduced in both groups (P<0.01),and there was no statistically significant difference between the two groups regarding FPG,2 h PG,and HbA1c levels after treatment. (4)Serum sex hormone indexes comparison:After treatment,the levels of FT,TT,PRL,LH,and FSH were significantly increased in both groups (P<0.01),while E2 levels were significantly decreased (P<0.01). There was no statistically significant difference between the two groups in the levels of FT,TT,PRL,LH,FSH,and E2 after treatment. There was also no significant difference in SHBG levels within or between the groups before and after treatment. During the clinical observation,neither group exhibited any obvious adverse reactions. ConclusionModified Shibaotang can significantly improve the clinical symptoms of male late-onset hypogonadism of kidney essence deficiency syndrome complicated with diabetes mellitus,reduce blood glucose,and increase sex hormone levels. The mechanism may involve the inhibition of aromatase transformation in adipocytes,promotion of GnRH production,and regulation of the hypothalamic-pituitary-gonadal axis function.
8.Chinese Materia Medica by Regulating Nrf2 Signaling Pathway in Prevention and Treatment of Ulcerative Colitis: A Review
Yasheng DENG ; Lanhua XI ; Yanping FAN ; Wenyue LI ; Tianwei LIANG ; Hui HUANG ; Shan LI ; Xian HUANG ; Chun YAO ; Guochu HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):321-330
Ulcerative colitis(UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulceration of the colonic mucosa and submucosa, and its complex pathogenesis involves immune abnormality, oxidative stress and other factors. The nuclear transcription factor E2-related factor 2(Nrf2), encoded by the Nfe212 gene, plays a central role in antioxidant responses. It not only activates various antioxidant response elements such as heme oxygenase-1(HO-1) and quinone oxidoreductase 1(NQO1), but also enhances the activity of glutathione-S-transferase(GST) and superoxide dismutase 1(SOD1), effectively eliminating reactive oxygen species(ROS) accumulated in the body, and mitigating oxidative stress-induced damage to intestinal mucosa. In addition, Nrf2 can reduce the release of inflammatory factors and infiltration of immune cells by regulating immune response, cell apoptosis and autophagy pathways, thereby alleviating intestinal inflammation and promoting the repair and regeneration of damaged mucosa. Based on this, this paper reviews the research progress of Chinese materia medica in the prevention and treatment of UC by modulating the Nrf2 signaling pathway. It deeply explores the physiological role of Nrf2, the molecular mechanism of activation, the protective effect in the pathological process of UC, and how active ingredients in Chinese materia medica regulate the Nrf2 signaling pathway through multiple pathways to exert their potential mechanisms. These studies have revealed in depth that Chinese materia medica can effectively combat oxidative stress by regulating the Nrf2 signaling pathway. It can also play a role in anti-inflammatory, promoting autophagy, inhibiting apoptosis, protecting the intestinal mucosal barrier, and promoting intestinal mucosal repair, providing new ideas and methods for the multi-faceted treatment of UC.
9.Quantitative analysis on microvasculature in the optic disc area of patients with unilateral branch retinal vein occlusion
Jia SUN ; Jian LIU ; Peng YAN ; Nan LU ; Zhiming SHAN ; Dongni YANG
International Eye Science 2025;25(1):152-156
AIM: To observe the changes of retinal nerve fiber layer(RNFL)thickness and radial peripheral capillary(RPC)density in patients with unilateral branch retinal vein occlusion(BRVO), and further analyze the correlation between RPC density and RNFL thickness.METHODS: Observational study. Totally 37 patients with unilateral BRVO diagnosed at the ophthalmology department of First Hospital of Qinhuangdao from October 2020 to January 2022 were selected, the 37 affected eyes were the unilateral BRVO group, and 37 fellow healthy eyes were the contralateral unaffected group, and 35 healthy individuals(35 right eyes were selected)without ocular diseases during the same period were selected as the normal control group. The best corrected visual acuity, intraocular pressure, anterior segment, fundus and optical coherence tomography angiography(OCTA)were examined in both eyes of all BRVO patients and healthy individuals. The central macular thickness(CMT), the RNFL thickness, and the optic disc-AV crossing distance(DAVD)were measured by built-in software of the OCTA equipment. The optimized U-net algorithm was used to eliminate the large blood vessels, and then the RPC density was calculated. The CMT, RNFL thickness and RPC density were compared among the three groups. And the correlations of the RPC density with the CMT, RNFL thickness, and the DAVD were investigated.RESULTS: Compared with the contralateral unaffected group and the normal control group, the CMT and the RNFL thickness were significantly thickened in the unilateral BRVO group(all P<0.05); there were no statistical differences in the CMT and the RNFL thickness between the contralateral unaffected group and the normal control group(all P>0.05). The RPC density in the unilateral BRVO group increased compared with the contralateral unaffected group and decreased compared with the normal control group, but there was no statistically difference(all P>0.05). However, the RPC density in the contralateral unaffected group decreased compared with the normal control group(P<0.05). The RPC density in the unilateral BRVO group was not correlated with the CMT(P=0.960), but positively correlated with the RNFL thickness(r=0.401, P=0.014)and negatively correlated with the DAVD(r=-0.339, P=0.040).CONCLUSION: The RNFL thickened significantly and the RPC density did not change significantly in the optic disc area of BRVO patients. The RPC density is positively correlated with the RNFL thickness, indicating that the RNFL thickness can be used as a monitoring indicator to analyze and study the damage degree of the RPC density.
10.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.

Result Analysis
Print
Save
E-mail