1.Research progress on non-surgical treatment of intermittent exotropia
International Eye Science 2026;26(1):91-95
Intermittent exotropia(IXT)is the most prevalent form of childhood strabismus, with an estimated prevalence of approximately 3.26% in the Chinese population. Although patients can intermittently maintain orthotropia, the deviation angle often fluctuates markedly, and frank exotropia may become evident during fatigue or lapses in attention. Without intervention, roughly 75% of cases progress over time. Management comprises surgical and non-surgical approaches. Surgery remains the most definitive treatment, however, the optimal timing is controversial, and postoperative outcomes may include under- or over-correction, necessitating additional procedures. Non-surgical options include observation, refractive correction, over-minus lens therapy, prisms, orthoptic exercises, and botulinum toxin-A injections. These modalities are particularly suitable for young, or uncooperative children, patients with small-angle, well-controlled deviations, or those seeking to defer surgery, in such cases, non-surgical treatment can maintain binocular alignment and preserve monocular function, thereby delaying or avoiding surgery. Because the efficacy of each non-surgical strategy varies, this review summarizes the current evidence on non-surgical treatment of IXT.
2.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
3.Multicenter machine learning-based construction of a model for predicting potential organ donors and validation with decision curve analysis
Xu WANG ; Wenxiu LI ; Fenghua WANG ; Shuli WU ; Dong JIA ; Xin GE ; Zhihua SHAN ; Tongzuo LI
Organ Transplantation 2026;17(1):106-115
Objective To evaluate the predictive value of different machine learning models constructed in a multicenter environment for potential organ donors and verify their clinical application feasibility. Methods The study included 2 000 inpatients admitted to five domestic tertiary hospitals from January 2020 to December 2023, who met the criteria for potential organ donation assessment. They were randomly divided into a training set and an internal validation set (7∶3). Another 300 similar patients admitted to the First Affiliated Hospital of Harbin Medical University from January 2024 to April 2025 were included as an external validation set. The area under the curve (AUC), sensitivity, specificity, accuracy and F1-score of three models were compared, and the consistency of the potential organ donor determination process was tested. Multivariate logistic regression analysis was used to identify predictive factors of potential organ donors. Decision curve analysis (DCA) was employed to verify the resource efficiency of each model, and the threshold interval and intervention balance point were assessed. Results Apart from age, there were no significant differences in other basic characteristics among the centers (all P>0.05). The consistency of the potential organ donor determination process among researchers in each center was good [all 95% confidence interval (CI) lower limits >0]. In the internal validation set, the XGBoost model had the best predictive performance (AUC=0.92, 95% CI 0.89-0.94) and the best calibration (P=0.441, Brier score 0.099). In the external validation set, the XGBoost model also had the best predictive performance (AUC=0.91, 95% CI 0.88-0.94), outperforming logistic regression and random forest models. Multivariate logistic regression showed that mechanical ventilation had the greatest impact (odds ratio=2.06, 95% CI 1.54-2.76, P<0.001). DCA indicated that the XGBoost model had the highest net benefit in the threshold interval of 0.2-0.6. The “treat all” strategy only had a slight advantage at extremely low thresholds. The recommended threshold interval, which balances intervention costs and clinical benefits, considers ≥50% positive predictive value (PPV) and ≤50 referrals per 100 high-risk patients. Conclusions The XGBoost model established in a multicenter environment is accurate and well-calibrated in predicting potential organ donors. Combined with DCA, it may effectively guide the timing of clinical interventions and resource allocation, providing new ideas for the assessment and management of organ donation after brain death.
4.Improvement effects and mechanism of astragaloside Ⅳ on neuroinflammation
Mimi WANG ; Yonggang FENG ; Yun HAN ; Kaixin SHAN ; Fuyu LIU ; Mingsan MIAO ; Xiaoyan FANG
China Pharmacy 2026;37(1):30-35
OBJECTIVE To investigate the improvement effects and mechanism of astragaloside Ⅳ (AS- Ⅳ ) on lipopolysaccharide (LPS)-induced neuroinflammation. METHODS BV2 cells were divided into control group, LPS group, AS-Ⅳ groups at concentrations of 20 and 40 μmol/L, and dexamethasone group (2 μmol/L). Except for control group, neuroinflammation model was established with LPS (1 μg/mL) in other groups after medication. The levels of inflammatory factors [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO)] in cell supernatant were measured in each group. Mice were randomly divided into normal group, model group, positive control group (Aspirin enteric-coated tablet, 20 mg/kg), AS-Ⅳ low- and high-dose groups (10, 20 mg/kg), with 6 mice in each group. Mice in each group were administered the corresponding drug/normal saline via gavage/intraperitoneal injection, once a day, for 14 consecutive days. Except for normal group, other groups were intraperitoneally injected with LPS (250 μg/kg) 1 hour after daily administration of the drug/normal saline to establish neuroinflammation model. Serum levels of IL-6 and TNF-α were measured 2 h after the last medication; histopathological morphology of cerebral tissue in mice were observed; the co-localization of inducible nitric oxide synthase (iNOS)/ionized calcium binding adapter molecule 1 (Iba1) and CD206/Iba1 in the cerebral cortex region of mice was observed; the expressions of proteins related to the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway in brain tissue of mice were also determined, including NF-κB p65, phosphorylated NF-κB p65(p-NF-κB p65), p38 MAPK, phosphorylated p38 MAPK (p-p38 MAPK), extracellular signal-regulated kinase (ERK), and phosphorylated ERK (p-ERK). RESULTS In the cell experiments, compared with control group, the levels of IL-6, TNF- α and NO in the cell supernatant of the LPS group were increased significantly (P<0.05); compared with LPS group, the levels of IL-6, TNF-α and NO were decreased significantly in the administration groups (P<0.05). In the animal experiments, compared with the normal group, the serum levels of IL-6 and TNF- α, the number of iNOS/Iba1 co-localization positive cells in the cerebral cortex, and the phosphorylation levels of p38 MAPK, NF- κB p65 and ERK proteins in brain tissue were all significantly increased/elevated in model group (P<0.05); the number of CD206/ Iba1 co-localization positive cells in the cerebral cortex region significantly decreased (P<0.05). The neurons in the cerebral cortex and the CA3 region of the hippocampus displayed a disordered arrangement. Compared with model group, above quantitative indexes of mice were all reversed significantly in administration groups (P<0.05); the neuronal cells in the cerebral cortex and the CA3 region of the hippocampus exhibited a relatively orderly arrangement. CONCLUSIONS AS-Ⅳ may inhibit the activation of the NF-κB/MAPK signaling pathway, promote the M2-type polarization of microglia, and thereby suppress neuroinflammatory responses.
5.Advances in polymorphisms of genes associated with oxaliplatin-induced peripheral neurotoxicity
China Pharmacy 2026;37(1):130-136
Peripheral neurotoxicity represents one of the most severe dose-limiting adverse reactions associated with oxaliplatin, with genetic polymorphisms playing a significant role in oxaliplatin-induced peripheral neuropathy (OIPN). OIPN can be categorized as acute or chronic based on onset timing. The former presents clinically as sensory abnormalities or even motor disorders, while the latter presents clinically as limb sensory disorders that persist, numbness or pain in the hands and feet. The transporter genes OCT2, OCTN2, and NHE1 may be implicated in OIPN; drug-metabolizing enzyme gene GSTP1 Ile105Val, DPYD rs1801265, voltage-gated sodium channel (NaV) gene SCN4A rs2302237, SCN9A rs6746030, SCN10A rs12632942, and other associated genes such as HLA-G rs1610696, rs371194629 and CCNH rs2230641, rs3093816 are associated with severe OIPN. Conversely, DNA repair-related gene XRCC1 rs23885, NaV gene SCN9A rs3750904, rs12478318 and rs6754031 are associated with reduced OIPN risk. In the future, the genetic research findings on OIPN can be translated into clinical applications, ultimately achieving individualized precision medicine for patients.
6.Comparison of Wild and Cultivated Bupleurum scorzonerifolium Based on Traditional Quality Evaluation
Changsheng YUAN ; Feng ZHOU ; Xingyu LIU ; Yu SHI ; Yihan WANG ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Huaizhong GAO ; Yanmeng LIU ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):203-214
ObjectiveTo characterize the quality differences among different germplasm and introduced varieties of Bupleurum scorzonerifolium roots(BSR), and explore the underlying molecular mechanisms, providing a basis for high-quality production and quality control. MethodsWild BSR from Yulin(YLW) served as the quality reference, we conducted comparative analysis among YLW, locally domesticated wild germplasm in Yulin(YLC3), Daqing germplasm introduced and cultivated in Yulin(YLDQC3), and locally cultivated germplasm in Daqing(DQC3). A combination of traditional pharmacognostic methods and modern multi-omics analyses was employed, including macroscopic traits(appearance, odor), microscopic features(proportions of cork, phloem, xylem), cell wall component contents(hemicellulose, cellulose, lignin), carbohydrate contents(starch, water-soluble polysaccharides), marker compound contents(ethanol-soluble extracts, total saponins, liposoluble extracts, and saikosaponins A, B2, C, D), metabolomics, and transcriptomics, in order to systematically characterize quality differences and investigate molecular mechanisms among these samples. ResultsMacroscopically, Yulin-produced BSR(YLW, YLC3, YLDQC3) exhibited significantly greater weight, length, and upper and middle diameters than Daqing-produced BSR(DQC3). Odor-wise, YLW and YLC3 had a a fragrance taste, YLDQC3 had a rancid oil odor, and DQC3 had a sweet and fragrant taste. Microscopically, Yulin germplasm(YLW, YLC3) and Daqing germplasm(YLDQC3, DQC3) shared similar structural features, respectively. However, Yulin germplasm showed significantly higher proportions of cork and phloem, as well as stronger xylem vessel staining intensity compared to Daqing germplasm. Regarding various component contents, Yulin germplasm contained significantly higher levels of ethanol-soluble extracts, total saponins, and saikosaponins A, B2, C, D, while Daqing germplasm had significantly higher levels of hemicellulose, starch, and liposoluble extracts. After introduction to Yulin, the Daqing germplasm(YLDQC3) showed increased starch, water-soluble polysaccharides and liposoluble extracts contents, decreased cell wall component content, but no significant difference in other component contents. Metabolomics revealed that saponins and terpenes accumulated significantly in Yulin germplasm, while alcohols and aldehydes accumulated predominantly in Daqing germplasm. Transcriptomics indicated similar gene expression patterns within the same germplasm but specificity between different germplasms. Integrative metabolomic-transcriptomic analysis identified 145 potential key genes associated with the saikosaponin biosynthesis pathway, including one acetyl-coenzyme A(CoA) acetyltransferase gene(ACAT), one 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene(HMGS), two hydroxymethylglutaryl-CoA(HMG-CoA) reductase genes(HMG), one phosphomevalonate kinase gene(PMK), one 1-deoxy-D-xylose-5-phosphate synthase gene(CLA), one hydroxymethylbuten-1-aldol synthase gene(HDR), two farnesyl pyrophosphate synthase genes(FPPS), one squalene synthase gene(SQS), one β-amyrin synthase gene(BAS), 102 cytochrome P450(CYP450) gene family members, and 32 uridine diphosphate-glucuronosyltransferase(UGT) gene family members. ConclusionAmong the three cultivated types, YLC3 most closely resembles YLW in appearance, microscopic features, contents of major bioactive constituents, metabolomic and transcriptomic profiles. Yulin germplasm exhibits superior saponin synthesis capability compared to Daqing germplasm, and Yulin region is more suitable for the growth of B. scorzonerifolium. Based on these findings, it is recommended that artificial cultivation in northern Shaanxi and similar regions utilize the local Yulin germplasm source cultivated for at least three years.
7.Comparison of Wild and Cultivated Polygalae Radix Based on Traditional Quality Evaluation
Yihan WANG ; Yanmeng LIU ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):215-224
ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted the quality differences between wild Polygalae Radix(WPR) and cultivated Polygalae Radix(CPR) from the aspects of character, microscope and chemical composition by modern scientific and technological means, providing a basis for high-quality production and quality control. MethodsCPR and local WPR in Yulin city, Shaanxi province from 1 to 6 years were collected, and a systematic comparative analysis was conducted using traditional pharmacognosy research methods combined with modern multi-omics analysis techniques, including character traits(length, weight, diameter), cross-sectional microscopic features(proportions of cork, phloem, xylem, etc), cell wall component content(hemicellulose, cellulose, lignin), extracts content(water-soluble extract and alcohol-soluble extract), carbohydrate content(starch, water-soluble polysaccharides), contents of total flavonoids, total saponins and specific marker compounds(3,6′-disinapoyl sucrose, polygalaxanthone Ⅲ, tenuifoliside A, tenuifoliside C, sibiricose A5 and A6) and other indexes. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to conduct comparative analysis of secondary metabolites in WPR and CPR, and multivariate statistical analysis such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were combined to screen the key differential components of them. ResultsIn terms of appearance, there were significant differences between WPR and CPR. The characteristics of WPR conformed to the "thick wrinkles on the epidermis" recorded in ancient books, featuring a wrinkled surface and grayish-brown appearance. However, CPR had a finer texture and a yellowish white appearance, with weight, length, and diameter increasing with longer cultivation periods. In terms of microscopy, WPR exhibited a thick cork layer with fissures in the phloem, whereas CPR had a thinner cork layer with uniformly arranged cork cells. Younger PR specimens showed numerous phloem fissures in cross-sections, while older specimens display progressively denser arrangements of phloem parenchyma cells. In terms of the contents of various major components, the contents of water-soluble extract, starch and total saponins in WPR were inversely proportional to the root diameter, while the contents of water-soluble extract, water-soluble polysaccharides and total saponins in CPR decreased with the increase of planting years. The content of xanthones in WPR was significantly higher than that of CPR, while the contents of other major components showed no significant change pattern. Among the six indicator components, the average content of sibiricose A5 in WPR was significantly higher than that of CPR, followed by slightly higher content of tenuifoliside A. In CPR, the relative content of 3,6′-disinapoyl sucrose and tenuifoliside A was the highest. The former showed an increase in volatility with increasing cultivation years, while the latter showed a decrease in volatility. The results of differential compound analysis based on UPLC-Q-TOF-MS showed that there were significant differences in metabolites between WPR and CPR samples. Among them, the seven compounds with the largest differences among WPR samples of different thicknesses were polygalasaponins, and for CPR with different planting years, the main differential compounds were oligosaccharide esters. ConclusionThere are differences between WPR and CPR in character, microscopic structure and chemical composition, and some components are inversely proportional with the increase of diameter and cultivation duration due to the distribution characteristics. However, the longer the cultivation years of PR, the closer it is to the "thick wrinkles on the epidermis" of WPR, which has been respected by generations. It is suggested that this traditional character combined with modern component contents should be used as the index of artificial cultivation and quality control of PR.
8.Research progress of non-insulin hypoglycemic drugs in the treatment of type 1 diabetes mellitus
Zejie XU ; Jiaoni ZHENG ; Jing LUO ; Liangyu WANG ; Wei YAN ; Qiang HE ; Xuefeng SHAN
China Pharmacy 2026;37(2):263-267
Traditional treatment for type 1 diabetes mellitus (T1DM) primarily involves insulin replacement, yet some patients encounter issues such as significant blood glucose fluctuations, high risk of hypoglycemia, and weight gain. In recent years, the adjuvant therapeutic role of non-insulin hypoglycemic drugs in T1DM has gradually gained attention. This article reviews the mechanisms of action and clinical research progress of five types of non-insulin hypoglycemic drugs in the treatment of T1DM: amylin analogues (pramlintide), biguanides (metformin), sodium-glucose co-transporter 2 inhibitor, dipeptidyl peptidase-4 inhibitor, and glucagon-like peptide-1 receptor agonist. It is found that these drugs can enhance clinical benefits for T1DM patients by improving insulin sensitivity, delaying gastric emptying, promoting urinary glucose excretion, and regulating incretin levels, thereby reducing glycated hemoglobin levels, decreasing insulin dosage, and managing body weight. Simultaneously, these drugs also present limitations such as low patient compliance due to complex dosing regimens, increased risk of diabetic ketoacidosis, and heterogeneity in glycemic control. Future research could focus on developing individualized treatment strategies, combining pharmacogenomics with novel biomarkers to precisely identify subpopulations of patients who may benefit, and delving into the potential value of these drugs in delaying diabetic vascular complications and improving patients’ quality of life.
9.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
10.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.

Result Analysis
Print
Save
E-mail