2.Prolonged semen incubation alters the biological characteristics of human spermatozoa
Sayed Abbas Datli BEIGI ; Mohammad Ali KHALILI ; Ali NABI ; Mohammad HOSSEINI ; Abolghasem Abbasi SARCHESHMEH ; Mojdeh SABOUR
Clinical and Experimental Reproductive Medicine 2022;49(4):270-276
Objective:
The present study assessed the biological characteristics of human spermatozoa at different time intervals (0, 1, 1.5, and 2 hours) after incubation at 37°C.
Methods:
Twenty-five normozoospermic semen samples were incubated at 37°C. Incubation was performed at four time intervals of 0 (after liquefaction), 1, 1.5, and 2 hours. The samples were evaluated for sperm parameters at each time interval.
Results:
The rate of sperm progressive motility decreased at 1.5 hours compared to 0 hours as well as 2 hours compared to 1 hour and 0 hours. The rate of non-motile spermatozoa also decreased after 2 hours compared to after 0 hours. No significant changes were observed in sperm viability (p=0.98) and non- progressive motility (p=0.48) at any time intervals. Abnormal sperm morphology increased at 1.5 hours of incubation time (p<0.001). No significant changes were observed in DNA fragmentation at 1 hour compared to 0 hours (median [interquartile range]: 19.5 [4] vs. 19 [4]), as well as at 1.5 hours compared to 1 hour (20 [5]). However, a significant increase in DNA fragmentation was observed at 1.5 hours compared to 0 hours. The mitochondrial membrane potential decreased remarkably after 1 hour of incubation time. No significant differences were observed in the acrosome reaction or malonaldehyde levels at any time point (p=0.34 and p=0.98, respectively).
Conclusion
The incubation of normozoospermic samples before use in assisted reproductive technology should be less than 1.5 hours to minimize the destructive effects of prolonged incubation time on general and specific sperm parameters.
3.Comparison of chest CT scan findings between COVID-19 and pulmonary contusion in trauma patients based on RSNA criteria: Established novel criteria for trauma victims.
Hossein ABDOLRAHIMZADEH FARD ; Salahaddin MAHMUDI-AZER ; Qusay ABDULZAHRAA YAQOOB ; Golnar SABETIAN ; Pooya IRANPOUR ; Zahra SHAYAN ; Shahram BOLANDPARVAZ ; Hamid Reza ABBASI ; Shiva AMINNIA ; Maryam SALIMI ; Mohammad Mehdi MAHMOUDI ; Shahram PAYDAR ; Roham BORAZJANI ; Ali TAHERI AKERDI ; Masome ZARE ; Leila SHAYAN ; Mohammadreza SASANI
Chinese Journal of Traumatology 2022;25(3):170-176
PROPOSE:
In this study, we re-assessed the criteria defined by the radiological society of North America (RSNA) to determine novel radiological findings helping the physicians differentiating COVID-19 from pulmonary contusion.
METHODS:
All trauma patients with blunt chest wall trauma and subsequent pulmonary contusion, COVID-19-related signs and symptoms before the trauma were enrolled in this retrospective study from February to May 2020. Included patients (Group P) were then classified into two groups based on polymerase chain reaction tests (Group Pa for positive patients and Pb for negative ones). Moreover, 44 patients from the pre-pandemic period (Group PP) were enrolled. They were matched to Group P regarding age, sex, and trauma-related scores. Two radiologists blindly reviewed the CT images of all enrolled patients according to criteria defined by the RSNA criteria. The radiological findings were compared between Group P and Group PP; statistically significant ones were re-evaluated between Group Pa and Group Pb thereafter. Finally, the sensitivity and specificity of each significant findings were calculated. The Chi-square test was used to compare the radiological findings between Group P and Group PP.
RESULTS:
In the Group PP, 73.7% of all ground-glass opacities (GGOs) and 80% of all multiple bilateral GGOs were detected (p < 0.001 and p = 0.25, respectively). Single bilateral GGOs were only seen among the Group PP. The Chi-square tests showed that the prevalence of diffused GGOs, multiple unilateral GGOs, multiple consolidations, and multiple bilateral consolidations were significantly higher in the Group P (p = 0.001, 0.01, 0.003, and 0.003, respectively). However, GGOs with irregular borders and single consolidations were more significant among the Group PP (p = 0.01 and 0.003, respectively). Of note, reticular distortions and subpleural spares were exclusively detected in the Group PP.
CONCLUSION
We concluded that the criteria set by RSNA for the diagnosis of COVID-19 are not appropriate in trauma patients. The clinical signs and symptoms are not always useful either. The presence of multiple unilateral GGOs, diffused GGOs, and multiple bilateral consolidations favor COVID-19 with 88%, 97.62%, and 77.7% diagnostic accuracy.
COVID-19
;
Contusions/diagnostic imaging*
;
Humans
;
Lead
;
Lung/diagnostic imaging*
;
Lung Injury/etiology*
;
Retrospective Studies
;
SARS-CoV-2
;
Tomography, X-Ray Computed/methods*
4.Biological properties the novel application of N-trimethyl chitosan nanospheres as a stabilizer and preservative in tetanus vaccine
Majdedin GHALAVAND ; Mojtaba SAADATI ; Jafar SALIMIAN ; Ebrahim ABBASI ; Ghader HOSSEINZADEH ; Hadi Esmaeili Gouvarchin GHALEH ; Ali AHMADI
Clinical and Experimental Vaccine Research 2021;10(1):24-34
Purpose:
Chitosan is a natural polymer that has excellent properties include biocompatibility, biodegradability, no cytotoxicity, high charge density, low cost, mucoadhesive, permeation enhancing (ability to cross tight junction), and immunomodulating ability that makes the spectrum of its applicability much broader. This study was conducted to investigate the stabilizing, preservative and immunogenicity properties of N-trimethyl chitosan nanospheres (N-TMCNS).
Materials and Methods:
The tetanus toxoid (TT) was encapsulated into N-TMCNS and then characterized by scanning electron microscope, atomic force microscope, and dynamic light scattering. For stabilizer assay of N-TMCNS after storage of TT-N-TMCNS at different temperatures for 3 weeks, they were used for immunization of mice and different temperatures groups’ anti-TT-N-TMCNS production compared with other groups. Finally, the immunized mice were challenged with tetanus toxin. The preservation activity of TT-N-TMCNS against Escherichia coli was compared with thimerosal formulated TT.
Results:
Our results revealed that heat-treated TT-N-TMCNS could induce higher titer of neutralizing immunoglobulin G in compared to TT vaccine and was able to protect the mice better than TT vaccine in challenge test. Furthermore, N-TMCNS as a preservative inhibited the growth of E. coli more effective than thimerosal.
Conclusion
Overall, the obtained results indicated that the N-TMCNS is one of the best stabilizer and preservative agent that can be used in the formulation of TT vaccine.
5. Clinical outcomes of moderate to severe COVID-19 patients receiving invasive vs. non-invasive ventilation
Zubia JAMIL ; Samreen KHALID ; Shahid Mumtaz ABBASI ; Yasir WAHEED ; Jamal AHMED
Asian Pacific Journal of Tropical Medicine 2021;14(4):176-182
Objective: To evaluate the in-hospital outcome of moderate to severe COVID-19 patients admitted in High Dependency Unit (HDU) in relation to invasive vs. non-invasive mode of ventilation. Methods: In this study, the patients required either non-invasive [oxygen ≤10 L/min or >10 L/min through mask or nasal prongs, rebreather masks and bilevel positive airway pressure (BiPAP)] or invasive ventilation. For analysis of 30-day in hospital mortality in relation to use of different modes of oxygen, Kaplan Meier and log rank analyses were used. In the end, independent predictors of survival were determined by Cox regression analysis. Results: Invasive ventilation was required by 15.1% patients while 84.9% patients needed non-invasive ventilation. Patients with evidence of thromboembolism, high inflammatory markers and hypoxemia mainly required invasive ventilation. The 30-day in hospital mortality was 72.7% for the invasive group and 12.9% for the non-invasive group (1.8% oxygen <10 L/min, 0.9% oxygen >10 L/min, 3.6% rebreather mask and 4.5% BiPAP). The median time from hospital admission to outcome was 7 days for the invasive group and 18 days for the non-invasive group (P<0.05). Age, presence of co-morbidities, number of days requiring oxygen, rebreather, BiPAP and invasive ventilation were independent predictors of outcome. Conclusions: Invasive mechanical ventilation is associated with adverse outcomes possibly due to ventilator associated lung injury. Thus, protective non-invasive ventilation remains the necessary and safe treatment for severely hypoxic COVID-19 patients.
6.Is there an association between platelet and blood inflammatory indices and the risk of gestational diabetes mellitus?
Mahta Abbasi FASHAMI ; Sepideh HAJIAN ; Maryam AFRAKHTEH ; Mehdi Khabaz KHOOB
Obstetrics & Gynecology Science 2020;63(2):133-140
OBJECTIVE: Gestational diabetes mellitus (GDM) is the most prevalent medical complication in pregnancy. Early diagnosis of GDM can influence maternal/neonatal outcomes. To assess the association between platelet and blood inflammatory indices and the risk of GDM occurrence using the complete blood count (CBC) test. We also aimed to determine the sensitivity of each parameter for an early screening of this disorder during pregnancy.METHODS: This case-control study included 2 groups of 110 pregnant women with and without GDM. The women in each group were compared after the routine screening for GDM and after the CBC test at 24–28 weeks' gestation after being matched according to the inclusion criteria. Data were analyzed using SPSS version 16 and Medcalc version 14.8.1 software.RESULTS: There were statistically significant intergroup differences in white blood cell (WBC) count, platelet count, mean platelet volume (MPV), plateletcrit (PCT), MPV to platelet ratio, platelet to lymphocyte ratio, and Rh values. The values of lymphocyte count, neutrophil count, neutrophil to lymphocyte ratio, and blood group were not significantly different between groups. The logistic regression analysis showed the predictive values of WBC, platelet, MPV, and PCT in GDM. According to the receiver operating characteristic curve for all 3 variables, the level below the PCT chart was more than that of the others.CONCLUSION: Increasing platelet and inflammatory indices on the CBC test in the second trimester of pregnancy seemed to be associated with the probability of GDM occurrence.
7. The impact of climatic variables on the population dynamics of the main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae), in southern Iran
Madineh ABBASI ; Hassan VATANDOOST ; Ahmad HANAFI-BOJD ; Madineh ABBASI ; Abbas RAHIMI FOROUSHANI ; Tohid JAFARI-KOSHKI ; Tohid JAFARI-KOSHKI ; Kamran PAKDAD
Asian Pacific Journal of Tropical Medicine 2020;13(10):448-455
Objective: To determine the significance of temperature, rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran. Methods: Data on the monthly abundance of Anopheles stephensi larvae and adults were gathered from earlier studies conducted between 2002 and 2019 in malaria prone areas of southeastern Iran. Climatic data for the studied counties were obtained from climatology stations. Generalized estimating equations method was used for cluster correlation of data for each study site in different years. Results: A significant relationship was found between monthly density of adult and larvae of Anopheles stephensi and precipitation, max temperature and mean temperature, both with simple and multiple generalized estimating equations analysis (P<0.05). But when analysis was done with one month lag, only relationship between monthly density of adults and larvae of Anopheles stephensi and max temperature was significant (P<0.05). Conclusions: This study provides a basis for developing multivariate time series models, which can be used to develop improved appropriate epidemic prediction systems for these areas. Long-term entomological study in the studied sites by expert teams is recommended to compare the abundance of malaria vectors in the different areas and their association with climatic variables. Abbasi Madineh 1 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran; Infectious and Tropical Diseases Research Center,Tabriz University of Medical Sciences, Tabriz Rahimi Foroushani Abbas 2 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Jafari-Koshki Tohid 3 Molecular Medicine Research Center; Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz Pakdad Kamran 4 Department of Parasitology & Mycology, Paramedical School, Shahid Beheshti University of Medical Sciences, Tehran Vatandoost Hassan 5 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran Hanafi-Bojd Ahmad 6 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran WHO. Malaria report 2019. Geneva: WHO; 2019. Vatandoost H, Raeisi A, Saghafipour A, Nikpour F, Nejati J. Malaria situation in Iran: 2002-2017. Malar J 2019; 18: 200. Hanafi-Bojd AA, Azari-Hamidian S, Vatandoost H, Charrahy Z. Spatio-temporal distribution of malaria vectors (Diptera: Culicidae) across different climatic zones of Iran. Asian Pac J Trop Med 2011; 6: 498-504. Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan Province, southern Iran. Acta Trop 2006; 97(2): 196-203. Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop 2014; 139: 39-43. Gayan Dharmasiri G, Yashan Perera A, Harishchandra J, Herath H, Aravindan K, Jayasooriya HTR, et al. First record of Anopheles stephensi in Sri Lanka: A potential challenge for prevention of malaria reintroduction. Malar J 2017; 16: 326. Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop 2018; 188: 180-186. Zhou G, Munga S, Minakawa N. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 2007; 77(1): 29-35. Bashar K, Tuno N. Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasites Vectors 2014; 7: 442. Gardiner LS. Climate change and vector-borne disease. University Corporation for Atmospheric Research. 2018. [Online]. Available from: https://scied.ucar.edu/longcontent/climate-change-and-vector-borne- disease [Accessed on 9 June 2019]. Patz JA, Lindsay SW. New challenges, new tools: The impact of climate change on infectious diseases. Curr Opin Microbiol 1999; 2(4): 445-451. Khormi HM, Kumar L. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia. Geospat Health 2016; 11(3). doi: 10.4081/gh.2016.416. Ren Z, Wang D, Ma A, Hwang J, Bennett A, Sturrock HJW, et al. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination. Sci Rep 2016; 6: 20604. Campbell-lendrum D, Woodruff R. Climate change: Quantifying the health impact at national and local levels. Geneva: World Health Organization; 2007. Hanafi-Bojd AA. Using of remote sensing and geographical information system for estabiling a malaria monitoring system in the Bashadgard endemic focus, Hormozgan Province, Iran. Ph.D. Thesis. Tehran University of Medical Sciences; 2010. No. 4526. Mohammadkhani M, Khanjani N, Bakhtiari B, Sheikhzadeh K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol Control 2016; 1: 205-210. Statistical Center of Iran. Country statistical yearbook. 1st ed. Iran: Management & Planning Organization; 2018, p.100-120. Basseri HR, Moosakazemi SH, Yosafi S. Mohebali M, Hajaran H, Jedari M. Anthropophily of malaria vectors in Kahnouj district, south of Kerman, Iran. Iran J Public Health 2005; 34(2): 27-35. Fathian M, Vatandoost H, Moosa-Kazemi H, Raeisi A, Yaghoobi-Ershadi MR, Oshaghi MA, et al. Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of Southeastern Iran. J Arthropod-Borne Dis 2015; 9(1): 22-34. Mojahedi A, Basseri HR, Raeisi A, Pakari A. Bioecological characteristics of malaria vectors in different geographical areas of Bandar Abbas County, 2014. J Prev Med 2016; 3(1): 18-25. Nedjati J. The study on some bioecological characteristics of malaria vectors and monitoring of their suseptibility levels to some insecticides in Sarbaz county, Sistan va Baluchestan province. MSc. Thesis. Tehran University of Medical Sciences; 2011. No. 5046. Poudat A. Epidemiological survey of malaria in Bandar Abbas County, 1998-2002. MSc. Thesis. Tehran University of Medical Sciences; 2003. No. 3375. Yeryan M, Basseri HR, Hanafi-Bojd AA, Raeisi A, Edalat H, Safari R. Bio-ecology of malaria vectors in an endemic area, Southeast of Iran. Asian Pac J Trop Med 2016; 9(1): 32-38. Iran Meteorological Organization. Specialized products and services weather. 2019. [Online]. Available from: https://data.irimo.ir/ [Accessed on 10 April 2019]. Cui J. QIC program and model selection in GEE analyses. Stata J 2007; 7(2): 209-220. Aytekin S, Aytekin AM, Alten B. Effect of different larval rearing temperatures on the productivity (R0) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics. J Vec Ecol 2009; 34: 32-42. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J 2008; 7: 141. Simon-Oke IA, Olofintoye LK. The effect of climatic factors on the distribution and abundance of mosquito vectors in Ekiti State. J Biol Agri Healthcare 2015; 5(9): 142-146. Jemal Y, Al-Thukair AA. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi J Biol Sci 2016; 25(8):1593-1602. Msugh-Ter MM, Aondowase DA, Terese AE. Association of meteorological factors with two principal malaria vector complexes in the University of Agriculture Makurdi community, Central Nigeria. Am J Entomol 2017; 1(2): 31-38. [31 ]Kabbale FG, Akol AM, Kaddu JB, Ambrose W. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli District, Uganda Onapa. Parasit Vectors 2013; 6: 340. Paaijmans KP, Wandago OM, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One 2007; 2(11): e1146. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science 2001; 293: 2248-2251. Koenraadt CJ, Paaijmans KP, Schneider P, Githeko AK, Takken W. Low level vector survival explains unstable malaria in the western Kenya highlands. Trop Med Int Health 2006; 11(8): 1195-1205. Munga S, Minakawa N, Zhou G, Githeko AK, Yan G. Survivorship of immature stages of Anopheles gambiae s.l. (Diptera: Culicidae) in natural habitats in western Kenya highlands. J Med Entomol 2007; 44: 758-764. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes due to deforestation on the survivorship and reproductive fitness of Anopheles gambiae in Western Kenya Highlands. Am J Trop Med Hyg 2006; 74: 772-778. Afrane YA, Githeko AK, Yan G. The Ecology of Anopheles mosquitoes under climate change: Case studies from the effects of environmental changes in East Africa highlands. Ann Acad Sci 2012; 1249: 204-210. Abbasi F, Babaeian I, Malboosi SH, Asmari M, Mokhtari LG. Climate change assessment over Iran during future decades, using statistical downscaling of ECHO-G model. J Geogr Res 2012; 104: 205-230 (In Persian).
8.Frequency of Ocular Diseases in Infants at a Tertiary Care Hospital
Erum SHAHID ; Arshad SHAIKH ; Sina AZIZ ; Atya REHMAN
Korean Journal of Ophthalmology 2019;33(3):287-293
PURPOSE: To determine the frequency of ocular diseases in infants visiting the ophthalmology department of a tertiary care hospital. METHODS: This was a cross-sectional descriptive study conducted in the department of ophthalmology, Abbasi Shaheed Hospital, from January 2015 to May 2016. The study included 377 infants ranging in age from 1 day to less than 1 year who were, selected by a nonprobability consecutive sampling technique. A detailed history was taken, and a complete ocular examination was performed. Descriptive statistics were used to calculate the mean and standard deviation for age. Frequencies were calculated for ocular diseases along with the percentages. Outcome variables included various congenital and acquired diseases such as conjunctivitis, congenital cataract, glaucoma, nasolacrimal duct blockage, squint, trauma, and fundus abnormalities. RESULTS: The mean age of infants was 5.0 ± 3.7 months. There were 196 (52%) males and 181 (48%) females. The sample included 330 (87.5%) full term infants. Acquired ocular diseases occurred in 230 (61%) infants; and congenital diseases, in 147 (39%). The most common ocular disease was conjunctivitis, which occurred in 173 (46%) infants, followed by congenital blocked nasolacrimal duct, which occurred in 57 (15 %) infants. Conjunctivitis was more common among neonates than infants. CONCLUSIONS: Acquired ocular diseases were more common than congenital ocular diseases. The most common ocular pathology was conjunctivitis, followed by congenital nasolacrimal duct obstruction, in infants. Conjunctivitis was more common in neonates than infants.
Cataract
;
Conjunctivitis
;
Female
;
Glaucoma
;
Humans
;
Infant
;
Infant, Newborn
;
Male
;
Nasolacrimal Duct
;
Ophthalmology
;
Pathology
;
Strabismus
;
Tertiary Healthcare
9.Comparison of the impact of applications of Targeted Transfusion Protocol and Massive Transfusion Protocol in trauma patients.
Shahram PAYDAR ; Hosseinali KHALILI ; Golnar SABETIAN ; Behnam DALFARDI ; Shahram BOLANDPARVAZ ; Mohammad Hadi NIAKAN ; Hamidreza ABBASI ; Donat R SPAHN
Korean Journal of Anesthesiology 2017;70(6):626-632
BACKGROUND: The current study assessed a recently developed resuscitation protocol for bleeding trauma patients called the Targeted Transfusion Protocol (TTP) and compared its results with those of the standard Massive Transfusion Protocol (MTP). METHODS: Per capita utilization of blood products such as packed red blood cells (RBCs), fresh frozen plasma (FFP), and platelet concentrates was compared along with mortality rates during two 6-month periods, one in 2011 (when the standard MTP was followed) and another in 2014 (when the TTP was used). In the TTP, patients were categorized into three groups based on the presence of head injuries, long bone fractures, or penetrating injuries involving the trunk, extremities, or neck who were resuscitated according to separate algorithms. All cases had experienced motor vehicle accidents and had injury severity scores over 16. RESULTS: No statistically significant differences were observed between the study groups at hospital admission. Per capita utilization of RBC (4.76 ± 0.92 vs. 3.37 ± 0.55; P = 0.037), FFP (3.71 ± 1.00 vs. 2.40 ± 0.52; P = 0.025), and platelet concentrate (1.18 ± 0.30 vs. 0.55 ± 0.18; P = 0.006) blood products were significantly lower in the TTP epoch. Mortality rates were similar between the two study periods (P = 0.74). CONCLUSIONS: Introduction of the TTP reduced the requirements for RBCs, FFP, and platelet concentrates in severely injured trauma patients.
Blood Platelets
;
Craniocerebral Trauma
;
Erythrocytes
;
Extremities
;
Fractures, Bone
;
Hemorrhage
;
Humans
;
Injury Severity Score
;
Mortality
;
Motor Vehicles
;
Neck
;
Plasma
;
Resuscitation
;
Wounds and Injuries
10.Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro.
Masoud DOROODGAR ; Mahdi DELAVARI ; Moein DOROODGAR ; Ali ABBASI ; Ali Akbar TAHERIAN ; Abbas DOROODGAR
The Korean Journal of Parasitology 2016;54(1):9-14
Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 µg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 µg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.
Animals
;
Antiprotozoal Agents/pharmacology/therapeutic use
;
Apoptosis/*drug effects
;
Cells, Cultured
;
Inhibitory Concentration 50
;
Leishmania major/*drug effects
;
Leishmaniasis, Cutaneous/drug therapy
;
Macrophages/parasitology
;
Mice
;
Tamoxifen/*pharmacology/therapeutic use

Result Analysis
Print
Save
E-mail