2.Sequence Analysis and Confirmation of an HLA Null Allele Generated by a Base Insertion.
Zhan-Rou QUAN ; Yan-Ping ZHONG ; Liu-Mei HE ; Bing-Na YANG ; Hong-Yan ZOU
Journal of Experimental Hematology 2025;33(1):276-279
OBJECTIVE:
To confirm the sequence of a null allele HLA-C*08:127N produced by a base insertion.
METHODS:
PCR sequence-specific oligonucleotide probe (SSOP) and PCR sequence-based typing (SBT) were used for HLA routine detection, which discovered abnormal sequence maps of HLA-C in one acute myeloid leukemia patient. The sequence of the above loci was confirmed by next generation sequencing (NGS) technology.
RESULTS:
The SSOP typing result showed that HLA-C locus was C*03:04, C*08:01, while the sequence was suspected to be inserted or deleted in exon 3 by SBT, and finally confirmed by NGS as C*03:04, C*08:127N.
CONCLUSION
When base insertion produces HLA null alleles, SBT analysis software cannot provide correct results, but NGS technology can more intuitively obtain accurate HLA typing results.
Humans
;
Alleles
;
High-Throughput Nucleotide Sequencing
;
HLA-C Antigens/genetics*
;
Histocompatibility Testing
;
Polymerase Chain Reaction
;
Leukemia, Myeloid, Acute/genetics*
;
Sequence Analysis, DNA
;
Mutagenesis, Insertional
;
Exons
3.Identification of the Novel Allele HLA-B*54:01:11 Detected by NGS Using the Third Generation Sequencing Technology.
Nan-Ying CHEN ; Yi-Zheng HE ; Wen-Wen PI ; Qi LI ; Li-Na DONG ; Wei ZHANG
Journal of Experimental Hematology 2025;33(2):565-568
OBJECTIVE:
To distinguish the ambiguous genotyping results of human leukocyte antigen (HLA), identify a novel HLA-B allele and analyze the nucleotide sequence.
METHODS:
A total of 2 076 umbilical core blood samples from the Zhejiang Cord Blood Bank in 2022 were detected using the next generation sequencing technology (NGS) based on the Ion Torrent S5 platform. Among these a rare HLA-B allele with ambiguous combination result containing a base mutation was identified, and was further confimed by the third-generation sequencing (TGS) based on the nanopore technology.
RESULTS:
The NGS typing result of HLA-B locus showed HLA-B* 46:18, 54:06 or HLA-B*46:01, 54:XX (including a base mutation), and nanopore sequencing confirmed the typing as HLA-B*46:01, 54:XX (including a base mutation). Compared with HLA-B*54:01:01:01, the HLA-B*54:XX allele showed one single nucleotide substitution at position 1014 T>C in exon 6, with no amino acid change. The nucleotide sequence of the novel HLA-B*54:XX has been submitted to the GenBank nucleotide sequence database and the accession number OP853532 was assigned.
CONCLUSION
A ambiguous genotyping of the HLA-B Locus detected by NGS was distinguished by nanopore sequencing and a new HLA-B allele was successfully identified, which was officially named as HLA-B*54:01:11 by the World Health Organization Nomenclature Committee for Factors of the HLA System.
Humans
;
High-Throughput Nucleotide Sequencing
;
Alleles
;
HLA-B Antigens/genetics*
;
Genotype
;
Mutation
;
Sequence Analysis, DNA
;
Base Sequence
5.Advances on the treatment of Fusobacterium nucleatum-promoted colorectal cancers using nanomaterials.
Hang WANG ; Xiaoxue HOU ; Jianfeng LIU ; Cuihong YANG
Chinese Journal of Biotechnology 2023;39(9):3670-3680
Fusobacterium nucleatum (Fn) is an oral anaerobic bacterium that has recently been found to colonize on the surface of colorectal cancer cells in humans, and its degree of enrichment is highly negatively correlated with the prognosis of tumor treatment. Numerous studies have shown that Fn is involved in the occurrence and development of colorectal cancer (CRC), and Fn interacts with multiple components in the tumor microenvironment to increase tumor resistance. In recent years, researchers have begun using nanomedicine to inhibit Fn's proliferation at the tumor site or directly target Fn to treat CRC. This review summarizes the mechanism of Fn in promoting CRC and the latest research progress on Fn-related CRC therapy using different nanomaterials. Finally, the applications perspective of nanomaterials in Fn-promoted CRC therapy was prospected.
Humans
;
Colorectal Neoplasms/pathology*
;
Fusobacterium nucleatum/genetics*
;
Base Composition
;
RNA, Ribosomal, 16S
;
Phylogeny
;
Sequence Analysis, DNA
;
Tumor Microenvironment
6.Sequence analysis of Paragonimus internal transcribed spacer 2 and cyclooxygenase 1 genes in freshwater crabs in Henan Province.
W CHEN ; T JIANG ; Y DENG ; Y ZHANG ; L AI ; P JI ; D WANG
Chinese Journal of Schistosomiasis Control 2023;35(5):501-507
OBJECTIVE:
To investigate the sequences of internal transcribed spacer 2 (ITS2) and cyclooxygenase 1 (COX1) genes of Paragonimus metacercariae in freshwater crabs in Henan Province, identify the species of Paragonimus and evaluate its genetic relationships with Paragonimus isolates from other provinces in China.
METHODS:
Freshwater crabs were collected from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province from 2016 to 2021, and Paragonimus metacercariae were detected in freshwater crabs. Genomic DNA was extracted from Paragonimus metacercariae, and the ITS2 and COX1 genes were amplified using PCR assay, followed by sequencing of PCR amplification products. The gene sequences were spliced and aligned using the software DNASTAR, and aligned with the sequences of Paragonimus genes in the GenBank. Phylogenetic trees were created using the MEGA6 software with the Neighbor-Joining method based on ITS2 and COX1 gene sequences, with Fasciola hepatica as the outgroup.
RESULTS:
The detection rates of Paragonimus metacercariae were 6.83% (11/161), 50.82% (31/61), 18.52% (5/26), 8.76% (12/137), 14.29% (9/63), 17.76% (19/105), 18.50% (32/173) and 42.71% (41/96) in freshwater crabs from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province, with a mean detection rate of 19.46% (160/822), and a mean infection intensity of 0.57 metacercariae/g. The amplified ITS2 and COX1 gene fragments of Paragonimus were approximately 500 bp and 450 bp in lengths, respectively. The ITS2 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (99.8% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: MW960209.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with P. skrjabini from Sichuan Province (GenBank accession number: AY618747.1), Guangxi Zhuang Autonomous Region (GenBank accession number: AY618729.1) and Hubei Province (GenBank accession number: AY618751.1), and P. miyazaki from Fujian Province (GenBank accession number: AY618741.1) and Japan (GenBank accession number: AB713405.1). The COX1 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (90.0% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: AY618798.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with all P. skrjabini and clustered into the same sub-clade with P. skrjabini from Hubei Province (GenBank accession numbers: AY618782.1 and AY618764.1).
CONCLUSIONS
Paragonimus species from freshwater crabs in Henan Province were all characterized as P. skrjabini, and the ITS2 and COX1 gene sequences had the highest homology to those of P. skrjabini from Hubei Province. The results provide insights into study of Paragonimus in Henan Province and China.
Animals
;
Paragonimus/genetics*
;
Brachyura/genetics*
;
Cyclooxygenase 1/genetics*
;
Phylogeny
;
China/epidemiology*
;
Sequence Analysis, DNA
;
Paragonimiasis
7.Clinical features and genetic analysis of a child with 3-methylglutenedioic aciduria type VII due to novel variants of CLPB gene.
Pengwu LIN ; Xuan FENG ; Shengju HAO ; Ling HUI ; Chuan ZHANG ; Bingbo ZHOU ; Lian WANG ; Jingyun SHI ; Qinghua ZHANG
Chinese Journal of Medical Genetics 2023;40(11):1377-1381
OBJECTIVE:
To explore the clinical features and genetic basis for a child with 3-methylglutaconic aciduria type VII.
METHODS:
A child who was diagnosed at the Gansu Provincial Maternity and Child Health Care Hospital on August 9, 2019 was selected as the study subject. Clinical data of the child, including urine gas chromatography and mass spectrometry, were collected. The child and her parents were subjected to whole exome sequencing.
RESULTS:
The child, a female neonate, had presented mainly with intermittent skin cyanosis, convulsions, hypomagnesemia, apnea, neutropenia after birth. Her urine 3-methylpentenedioic acid has increased to 17.53 μmol/L. DNA sequencing revealed that she has harbored compound heterozygous variants of the CLPB gene, namely c.1016delT (p.L339Rfs*5) and c.1087A>G (p.R363G), which were respectively inherited from her mother and father. Both variants were unreported previously. Based on the standards from the American College of Medical Genetics and Genomics (ACMG), the variants were respectively predicted to be pathogenic and likely pathogenic.
CONCLUSION
The child was diagnosed with 3-methylglutenedioic aciduria type VII. Discovery of the c.1016delT and c.1087A>G variants has enriched the mutational spectrum of the CLPB gene.
Female
;
Humans
;
Infant, Newborn
;
Pregnancy
;
Base Sequence
;
Metabolism, Inborn Errors/diagnosis*
;
Mutation
;
Neutropenia/genetics*
;
Sequence Analysis, DNA
8.The best practice for microbiome analysis using R.
Tao WEN ; Guoqing NIU ; Tong CHEN ; Qirong SHEN ; Jun YUAN ; Yong-Xin LIU
Protein & Cell 2023;14(10):713-725
With the gradual maturity of sequencing technology, many microbiome studies have published, driving the emergence and advance of related analysis tools. R language is the widely used platform for microbiome data analysis for powerful functions. However, tens of thousands of R packages and numerous similar analysis tools have brought major challenges for many researchers to explore microbiome data. How to choose suitable, efficient, convenient, and easy-to-learn tools from the numerous R packages has become a problem for many microbiome researchers. We have organized 324 common R packages for microbiome analysis and classified them according to application categories (diversity, difference, biomarker, correlation and network, functional prediction, and others), which could help researchers quickly find relevant R packages for microbiome analysis. Furthermore, we systematically sorted the integrated R packages (phyloseq, microbiome, MicrobiomeAnalystR, Animalcules, microeco, and amplicon) for microbiome analysis, and summarized the advantages and limitations, which will help researchers choose the appropriate tools. Finally, we thoroughly reviewed the R packages for microbiome analysis, summarized most of the common analysis content in the microbiome, and formed the most suitable pipeline for microbiome analysis. This paper is accompanied by hundreds of examples with 10,000 lines codes in GitHub, which can help beginners to learn, also help analysts compare and test different tools. This paper systematically sorts the application of R in microbiome, providing an important theoretical basis and practical reference for the development of better microbiome tools in the future. All the code is available at GitHub github.com/taowenmicro/EasyMicrobiomeR.
Software
;
Microbiota
;
Sequence Analysis, DNA
;
Language
9.Epigenetic regulation mechanism: roles in enamel formation and developmental defects of enamel.
Mian WAN ; Yi Ting LI ; Li Wei ZHENG ; Xue Dong ZHOU
Chinese Journal of Stomatology 2023;58(1):68-74
Enamel formation is a series of complex physiological processes, which are regulated by critical genes spatially and temporally. These processes involve multiple developmental stages covering ages and are prone to suffer signal interference or gene mutations, ultimately leading to developmental defects of enamel (DDE). Epigenetic modifications have important regulatory roles in gene expression during enarnel development. New technologies including high-throughput sequencing, chromatin immunoprecipitation sequencing (ChIP-seq), and DNA methylation chip are emerging in recent years, making it possible to establish genome-wide epigenetic modification profiles during developmental processes. The regulatory role of epigenetic modification with spatio-temporal pattern, such as DNA methylation, histone modification and non-coding RNA, has significantly expanded our understanding of the regulatory network of enamel formation, providing a new theoretical basis of clinical management and intervention strategy for DDE. The present review briefly describes the enamel formation process of human beings' teeth as well as rodent incisors and summarizes the dynamic characteristics of epigenetic modification during enamel formation. The functions of epigenetic modification in enamel formation and DDE are also emphatically discussed.
Humans
;
Epigenesis, Genetic
;
Developmental Defects of Enamel
;
DNA Methylation
;
Oligonucleotide Array Sequence Analysis
;
Dental Enamel
10.Serological characteristics and molecular mechanism of an individual with p phenotype.
Jiayan TU ; Jianhua ZHOU ; Jinhui WU ; Xiaozhen HONG ; Xianguo XU ; Xiuwen NI
Chinese Journal of Medical Genetics 2023;40(3):291-294
OBJECTIVE:
To analyze the serological characteristics and molecular mechanism for an individual with p phenotype.
METHODS:
An individual with p phenotype upon blood group identification at Jiaxing Blood Center in May 2021 was analyzed. ABO, RhD and P1PK blood groups and irregular antibodies in her serum were identified using conventional serological methods. The encoding region of α1, 4-galactosyltransferase gene (A4GALT) encoding P1 and Pk antigens was analyzed by polymerase chain reaction-sequence-based typing (PCR-SBT).
RESULTS:
The individual was A group, RhD positive and had a p phenotype of the P1PK blood group system. Anti-PP1Pk was discovered in her serum. Sequencing analysis revealed that she has harbored a homozygous c.343A>T variant of the A4GALT gene.
CONCLUSION
The homozygous c.343A>T variant of the A4GALT gene probably underlay the p phenotype in this individual.
Female
;
Animals
;
Blood Group Antigens
;
Homozygote
;
Phenotype
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA

Result Analysis
Print
Save
E-mail