1.Collection, storage and utilization of lung transplant tissue samples
Yixing LI ; Xue SHI ; Hongyi WANG ; Runyi TAO ; Ye SUN ; Ailing SU ; Liyan TONG ; Jinteng FENG ; Yanpeng ZHANG ; Shuo LI ; Yawen WANG ; Guangjian ZHANG
Organ Transplantation 2025;16(1):147-155
After continuous development and improvement, lung transplantation has become the preferred means to treat a variety of benign end-stage lung diseases. However, the field of lung transplantation still faces many challenges, including shortage of donor resources, preservation and maintenance of donor lungs, and postoperative complications. Lung tissue samples removed after lung transplantation are excellent clinical resources for the study of benign end-stage lung disease and perioperative complications of lung transplantation. However, at present, the collection, storage and utilization of tissue samples after lung transplantation are limited to a single study, and unified technical specifications have not been formed. Based on the construction plan of the biobank for lung transplantation in the First Affiliated Hospital of Xi'an Jiaotong University, this study reviewed the practical experience in the collection, storage and utilization of lung transplant tissue samples in the aspects of ethical review, staffing, collection process, storage method, quality control and efficient utilization, in order to provide references for lung transplant related research.
2.Synthesis and anti-breast cancer activity of novel cyclic mono-carbonyl curcumin analogues
Xianhu FENG ; Yongjie CHEN ; Lin CHEN ; Yi HOU ; Wanjun CAO ; Qiang SU
China Pharmacy 2025;36(5):563-567
OBJECTIVE To design and synthesize mono-carbonyl curcumin analogues(MCACs) and investigate the activities of them against breast cancer. METHODS The analogues F1, F2, and F3 were obtained by aldol condensation reaction, and their antitumor activities(including the activities of human breast cancer cell MCF-7 and human lung cancer cell A549) were detected by MTT assay [evaluated with half inhibitory concentration(IC50)]. The results of MTT assay were compared with those of curcumin. Bioinformatics methods were used to collect the core targets of analogues F1, F2 and F3 acting on breast cancer, and then molecular docking verification was carried out. The cell experiments were conducted to investigate the effects of high, medium and low concentrations (16, 8, 4 μmol/L) of F1, F2 and F3 on the expression of the first core target protein as well as the effects of medium concentration of F1, F2 and F3 on the expression of cleaved-caspase-3. RESULTS Compared with curcumin, IC50 of analogues F1, F2 and F3 to A549 and MCF-7 cells(except for IC50 of analogue F2 to A549 cells) were decreased significantly(P< 0.05 or P<0.01); among them, IC50 of analogue F2 to MCF-7 cell was the lowest, being(9.67±1.27) μmol/L. Bioinformatics analysis showed that index of affinity of analogues F1, F2 and F3 with the first core target epidermal growth factor receptor (EGFR), protein kinase B (AKT) and AKT were 5.909 2, 8.402 5 and 6.486 6, respectively; high concentration of F1 could significantly reduce the phosphorylation level of EGFR protein in MCF-7 cells(P<0.01), while low, medium, and high concentrations of F2 and high concentration of F3 could significantly reduce the phosphorylation level of AKT protein in MCF-7 cells(P<0.05 or P<0.01). Medium concentration of F1, F2, and F3 could significantly increase the expression level of cleaved- caspase-3 protein in MCF-7 cells(P<0.01). CONCLUSIONS Designed and synthesized MCACs F1, F2 and F3 all have good anti- breast cancer activity, and F2 has better anti-breast cancer activity.
3.Application of boron-containing polyethylene as maze wall lining shielding for a 10 MV medical accelerator room
Yajing SONG ; Jing SU ; Shihua TAO ; Zechen FENG
Chinese Journal of Radiological Health 2025;34(1):73-76
Objective To evaluate the ambient dose equivalent rates of photons and neutrons inside and outside the door of a 10 MV accelerator room, and to report the shielding effect of boron-containing polyethylene as maze wall lining. Methods The ambient dose equivalent rates of photons and neutrons inside and outside the door of an accelerator room were taken as the research subject. The Kersey, Falcão, and modified Kersey methods were used to calculate the ambient dose equivalent rates of neutrons and neutron capture gamma rays inside and outside the door of the room before and after renovation. Measurements were made using an X-ray/γ-ray dose rate instrument and a neutron ambient dose equivalent rate meter. Calculated and measured results were compared. Results Before renovation, the measured neutron dose rate inside the door was 409 μSv/h, while the calculated values were 323 μSv/h (Kersey method), 428 μSv/h (Falcão method), and 219 μSv/h (modified Kersey method). The Falcão method yielded a value closest to the measured value, while the Kersey and the modified Kersey methods underestimated the value by 21% and 46%, respectively. After the installation of boron-containing polyethylene plates, the measured neutron dose rate inside the door was 190 μSv/h, with a 54% reduction. The neutron and photon ambient dose equivalent rates outside the door were 5.8 μSv/h and 6.0 μSv/h, respectively, before renovation, and 0.14 μSv/h and 1.6 μSv/h, respectively, after renovation. Conclusion For a 10 MV accelerator room, neutron shielding and protection measurements are necessary, especially for rooms with short mazes. The Falcão method provides the best estimate of neutron dose rates inside and outside the door. Using boron-containing polyethylene plates as maze wall lining is an economical and effective shielding method.
4.Research progress on the mechanism of action of rosmarinic acid in the prevention of cardiovascular diseases
Ke CAI ; Sheng-ru HUANG ; Fang-fang GAO ; Xiu-juan PENG ; Sheng GUO ; Feng LIU ; Jin-ao DUAN ; Shu-lan SU
Acta Pharmaceutica Sinica 2025;60(1):12-21
With the rapid development of social economy and the continuous improvement of human living standard, the incidence, fatality and recurrence rates of cardiovascular disease (CVD) are increasing year by year, which seriously affects people's life and health. Conventional therapeutic drugs have limited improvement on the disability rate, so the search for new therapeutic drugs and action targets has become one of the hotspots of current research. In recent years, the therapeutic role of the natural compound rosmarinic acid (RA) in CVD has attracted much attention, which is capable of preventing CVD by modulating multiple signalling pathways and exerting physiological activities such as antioxidant, anti-apoptotic, anti-inflammatory, anti-platelet aggregation, as well as anti-coagulation and endothelial function protection. In this paper, the role of RA in the prevention of CVD is systematically sorted out, and its mechanism of action is summarised and analysed, with a view to providing a scientific basis and important support for the in-depth exploration of the prevention value of RA in CVD and its further development as a prevention drug.
5.Development and Application of the Evidence Quality Rating Scale for Ancient Classical Prescriptions in Traditional Chinese Medicine
Juwen ZHANG ; Jianping LIU ; Xiangfei SU ; Wei WEI ; Xiaolan SU ; Xue FENG ; Fanya YU ; Xudong ZHANG ; Junhong YU ; Wei CHEN
Journal of Traditional Chinese Medicine 2025;66(8):804-810
ObjectiveTo develop the Evidence Grading Scale for Ancient classical prescriptions in Traditional Chinese medicine, assess its reliability and validity, and apply it in practice to provide multi-source evidence for clinical practice guidelines development. MethodsLiterature retrieval was conducted to extract and screen existing evaluation dimensions, then the initial items were summarized using thematic analysis. Experts in the clinical medicine, medical history and literature participated in the Delphi questionnaire survey to evaluate and refine the items. An expert consensus meeting was conducted to finalize the included items, refine the method for items evaluation and evidence grading. The evidence quality rating scale for ancient classical traditional Chinese medicine (TCM) prescriptions was then established and tested for reliability and validity. ResultsThrough literature review, extraction, screening and summarization, a total of 3 dimensions and 12 initial items were formed. Questionnaires were sent to 69 experts to evaluate the initial items, with a questionnaire response rate of 100% and an expert authority coefficient of 0.92. All 12 items were retained for they had importance scores above 4. The Evidence Grading Scale on Ancient classical prescriptions in Traditional Chinese medicine includes 3 dimensions with 12 items. The 3 dimensions includes ancient evidence, inheritance status, and modern application. Each dimension contains 4 items, and each item has a full score of 5 points. The evidence was rated as high-level, moderate-level, and low-level according to the final scores. The content validity index (CVI) of the 12 items was >0.9, the average CVI of the scale was 0.98, and the intraclass correlation coefficient (ICC) was 0.90. ConclusionThe Evidence Grading Scale on Ancient classical prescriptions in Traditional Chinese medicine has good reliability and validity, which is practical for use in the development of TCM clinical guidelines and can better support clinical decision-making.
6.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
7.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
8.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
9.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
10.Caffeoylquinic acids from Erigeron breviscapus ameliorates cognitive impairment and mitochondrial dysfunction in AD by activating PINK1/Parkin-mediated mitophagy.
Yuan-Zhu PU ; Hai-Feng CHEN ; Xin-Yi WANG ; Can SU
China Journal of Chinese Materia Medica 2025;50(14):3969-3979
This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.(DsRed) ratio, the expression of phosphatidylethanolamine-modified and GFP-labeled LGG-1(PE-GFP::LGG-1)/GFP-labeled LGG-1(GFP::LGG-1), and GFP-labeled SQST-1(GFP::SQST-1) proteins were investigated in transgenic C. elegans strains. The effect of EBCQA on paralysis was further evaluated after RNA interference(RNAi)-mediated suppression of the pink-1 and pdr-1 genes in CL4176 strain. An AD rat model was established through intraperitoneal injection of D-galactose and intragastric administration of aluminum trichloride. The effects of β-nicotinamide mononucleotide(NMN) and EBCQA on learning and memory ability, neuronal morphology, mitophagy occurrence, mitophagy-related protein expression(PINK1, Parkin, Beclin 1, LC3-Ⅱ/LC3-Ⅰ, p62), and mitochondrial functions(ATP content; enzyme activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ; mitochondrial membrane potential) were investigated in this AD rat model. The results showed that EBCQA delayed paralysis onset in the CL4176 strain, reduced Aβ oligomer formation, and upregulated the mRNA expression levels of lgg-1, bec-1, pink-1, and pdr-1, while downregulating sqst-1 mRNA expression. EBCQA also enhanced ATP content, mitochondrial membrane potential, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ. Furthermore, EBCQA improved the PE-GFP::LGG-1/GFP::LGG-1 ratio, reduced GFP::SQST-1 expression, and decreased the GFP/DsRed ratio. Notably, the ability of EBCQA to delay paralysis was significantly reduced following RNAi-mediated suppression of pink-1 and pdr-1 in CL4176 strain. In AD rats, the administration of NMN or EBCQA significantly improved learning and memory, restored neuronal morphology in the hippocampus, increased autophagosome numbers, and upregulated the expression of PINK1, Parkin, Beclin 1, and the LC3-Ⅱ/LC3-Ⅰ ratio, while reducing p62 expression. Additionally, the treatment with NMN or EBCQA both elevated ATP content, mitochondrial respiratory chain complex Ⅰ, Ⅲ, and Ⅳ activities, and mitochondrial membrane potential in the hippocampus. The above findings indicate that EBCQA improves cognitive impairment and mitochondrial dysfunction in AD, possibly through activation of PINK1/Parkin-mediated mitophagy.
Animals
;
Alzheimer Disease/psychology*
;
Mitophagy/drug effects*
;
Mitochondria/genetics*
;
Caenorhabditis elegans/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Cognitive Dysfunction/physiopathology*
;
Rats
;
Protein Kinases/genetics*
;
Humans
;
Male
;
Disease Models, Animal
;
Caenorhabditis elegans Proteins/genetics*
;
Drugs, Chinese Herbal/administration & dosage*

Result Analysis
Print
Save
E-mail