1.Differential gene expression of human adipose-derived stem cells in osteogenic induction.
Hamid AA ; Ruszymah BH ; Aminuddin BS ; Sathappan S ; Chua KH
The Medical Journal of Malaysia 2008;63 Suppl A():9-10
Human adipose-derived stem cells (HADSC) have demonstrated the capacity of differentiating into bone depending on the specific induction stimuli and growth factors. However, investigation on stem cell characteristic after osteogenic differentiation is still lacking. The goal of this study was to investigate the differential expression of sternness and osteogenic genes in non-induced HADSC compared with HADSC after osteogenic induction using quantitative Real Time RT-PCR. Our results showed that OCT-4, REX-1, FZD9, OSC, RUNX, and ALP were up regulated after osteogenic induction. This may indicated that HADSCs after osteogenic induction still possessed some stemness properties.
2.Tissue engineering provides the potential to replace and regenerate.
The Medical Journal of Malaysia 2008;63 Suppl A():27-28
Tissue engineering applies the principle of engineering and life sciences towards the development of biological substitute that restore, maintain or improve tissue or organ function. Scientists grow tissues or organs in vitro and implant them when the body is unable to prompt into healing itself. This presentation aims to highlight the potential clinical application of engineered tissues being researched on at the Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre.
3.Derivation of neurospheres from bone marrow stromal cells.
Ng AM ; Westerman K ; Kojima K ; Kodoma S ; Aminuddin BS ; Ruszymah BH ; Vacanti CA
The Medical Journal of Malaysia 2008;63 Suppl A():7-8
Nerve stem cells have a unique characteristic in that they form spherical aggregates, also termed neurospheres, in vitro. The study demonstrated the successful derivation of these neurospheres from bone marrow culture. Their plasticity as nerve stem cells was confirmed. The findings further strengthens the pluripotency of cell populations within the bone marrow.
4.Usage of allogeneic single layered tissue engineered skin enhance wound treatment in sheep.
Adha PR ; Chua KH ; Mazlyzam AL ; Low KC ; Aminuddin BS ; Ruszymah BH
The Medical Journal of Malaysia 2008;63 Suppl A():30-31
A major factor limiting survival following extensive thermal injury is insufficient availability of donor sites to provide enough skin for the required grafting procedures. Limitation of autologous grafting promotes the usage of allograft skin substitutes to promote wound healing. Here, we investigated the wound healing potential of allograft single layered tissue engineered skin which comprises of either keratinocytes (SLTES-K) or fibroblast (SLTES-F) with fibrin as the delivery system. Results from gross and microscopic evaluation showed our single layered tissue engineered skin constructed with keratinocytes or fibroblast after gamma radiation with the dosage of 2Gy could serve as allograft for the treatment of skin loss.
5.Living bilayered human skin equivalent: promising potentials for wound healing.
Mazlyzam AL ; Aminuddin BS ; Saim L ; Ruszymah BH
The Medical Journal of Malaysia 2008;63 Suppl A():32-33
The angiogenic potential of native skin (NS), keratinocytes single skin equivalent (SSE-K), fibroblasts single skin equivalent (SSE-F) and bilayered skin equivalent secreting angiogenic growth factors such as transforming growth factor beta1 (TGF-beta1), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF) in the in vitro systems at 24, 48, 72 hours and 7 days was compared using Enzyme-Linked Immunosorbent Assay (ELISA). Bilayered skin equivalent exhibit highest release of growth factors within 24 hours to 7 days of culture compared to NS, SSE-K and SSE-F. This proved the potential of bilayered skin equivalent in producing and sustaining growth factors release to enhance angiogenesis, fibroblasts proliferation, matrix deposition, migration and growth of keratinocytes.
6.A scanning electron microscopic study of in vivo tissue engineered respiratory epithelium in sheep.
Heikal MY ; Aminuddin BS ; Jeevanan J ; Chen HC ; Sharifah S ; Ruszymah BH
The Medical Journal of Malaysia 2008;63 Suppl A():34-34
Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
7.Approaches to deriving Schwann cells from human bone marrow for neural tube regeneration in a clinical setting.
Hidayah HN ; Mazzre M ; Ng AM ; Ruszymah BH ; Shalimar A
The Medical Journal of Malaysia 2008;63 Suppl A():39-40
Bone marrow derived Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. Human MSCs were subjected to a series of treatment with a reducing agent, retinoic acid and a combination of trophic factors. This treated MSCs differentiated into Schwann cells were characterized in vitro via flow cytometry analysis and immunocytochemically. In contrast to untreated MSCs, differentiated MSCs expressed Schwann cell markers in vitro, as we confirmed by flow cytometry analysis and immunocytochemically. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration since it is difficult to grow Schwann cells in vitro.
8.Tissue engineering research in developing countries, the significant and differences as compared to the developed countries.
The Medical Journal of Malaysia 2008;63 Suppl A():47-48
The emergence of tissue engineering and stem cell research has created a tremendous response amongst scientist in Malaysia. However, despite the enthusiastic to embark on the research we have to carefully divert the research towards our needs. This is due to our responsibility to address the mounting problem of communicable diseases here and a very limited funding. As commercialization is a key objective the combination of products towards treating or diagnosing communicable and non-communicable diseases in the developing country is another important factor. The discussion here is mainly on the evolution of tissue engineering in Malaysia and taking a model of tissue engineering in otolaryngology.
9.Scanning electron microscopy of cornea re-epithelization after transplanted with bilayered corneal construct.
Masrudin SS ; Ghafar NA ; Saidi M ; Aminuddin BS ; Rahmat A ; Ruszymah BH ; Othman F
The Medical Journal of Malaysia 2008;63 Suppl A():109-110
The present work was to determine the development and re-epithelization of bilayered corneal construct (BCC) in vitro and in vivo using scanning electron microscopy (SEM). The in vitro BCC was transplanted to the rabbit's eye and after 90 days the BCC was harvested and analyzed. The corneas were processed for morphology studies. The result indicates that the BICC that was transplanted for 90 days showed good development and re-epithelization of epithelial layer similar to the normal cornea.
10.Ex vivo growth of rabbit bulbar, fornix and palpebral conjunctival epithelia in a serum-free and feeder layer-free culture system.
Nizam MH ; Ruszymah BH ; Chua KH ; Ghafar NA ; Hamzah JC
The Medical Journal of Malaysia 2008;63 Suppl A():111-112
This study was conducted to explore the feasibility of culturing conjunctiva epithelial cells in serum-free and feeder layer-free culture system with regard to the cell morphology and immunocytochemistry of the rabbit bulbar, fornix and palpebral conjunctiva epithelia. The results showed that epithelium cells from all the three conjunctiva regions can be cultured in a serum-free and feeder layer-free environment. We obtained highest epithelial growth from fornix region with minimum invasion of fibroblast cells compared to other area. All cultured cells were stained positive for cytokeratin 19 and MUC5AC and negative for cytokeratin 3. These findings suggested that fornix was a better source of cells for the development of tissue engineered conjunctiva for future clinical application.
Result Analysis
Print
Save
E-mail