1.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
2.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
3.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
4.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
5.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
6.Research progress on impacts of air pollutants, gut microbiota, and seminal microbiota on semen quality
Wenchao XIA ; Jiahua SUN ; Yuya JIN ; Ruixin LUO ; Ruyan YAN ; Yuming GUI ; Yongbin WANG ; Fengquan ZHANG ; Wei WU ; Weidong WU ; Huijun LI
Journal of Environmental and Occupational Medicine 2025;42(8):1003-1008
In recent years, China has been facing the dual challenges of declining fertility rates and births, with male reproductive health issues, especially the decline in semen quality, identified as a pivotal contributor to this phenomenon. Meanwhile, accumulating evidence indicates that air pollutants, an increasingly severe environmental problem, can damage semen quality not only directly through their biological toxicity but also indirectly by disrupting the composition of microbial communities in the gut and semen, thereby dysregulating immune function, endocrine homeostasis, and oxidative stress responses. The gut microbiota and semen microbiota, as important components of the human microecosystem, play crucial roles in maintaining reproductive health. This article comprehensively reviewed the research progress on the potential effects of air pollutants (particulate matter and gaseous pollutants), gut microbiota, and semen microbiota on semen quality. Specifically, it elucidated the mechanisms of interaction between these factors and explored how they affect male fertility.
7.Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition.
Donghui LIU ; Qian WANG ; Ruixue ZHANG ; Ruixin SU ; Jiaxin ZHANG ; Shanshan LIU ; Huiying LI ; Zhesheng CHEN ; Yan ZHANG ; Dexin KONG ; Yuling QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1092-1103
Cancer multidrug resistance (MDR) impairs the therapeutic efficacy of various chemotherapeutics. Novel approaches, particularly the development of MDR reversal agents, are critically needed to address this challenge. This study demonstrates that tenacissoside I (TI), a compound isolated from Marsdenia tenacissima (Roxb.) Wight et Arn, traditionally used in clinical practice as an ethnic medicine for cancer treatment, exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells. TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin (DOX) and paclitaxel (PAC) by downregulating ABCB1 expression and reducing ABCB1 drug transport function. Mechanistically, protein arginine methyltransferase 1 (PRMT1), whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues, was differentially expressed in TI-treated SW620/AD300 cells. SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine (aDMA) and enhanced PRMT1-EGFR interaction compared to their parental cells. Moreover, TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR, PRMT1-EGFR interaction, and EGFR downstream signaling in SW620/AD300 and KBV200 cells. These effects were significantly reversed by PRMT1 overexpression. Additionally, TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities. This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR, suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.
Humans
;
Protein-Arginine N-Methyltransferases/antagonists & inhibitors*
;
Drug Resistance, Neoplasm/drug effects*
;
ErbB Receptors/genetics*
;
Animals
;
Cell Line, Tumor
;
Drug Resistance, Multiple/drug effects*
;
Methylation/drug effects*
;
Saponins/administration & dosage*
;
Mice
;
Mice, Nude
;
Mice, Inbred BALB C
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Doxorubicin/pharmacology*
;
Paclitaxel/pharmacology*
;
Female
;
Repressor Proteins
8.Experiences of LI Qiangou in Treating Laryngopharyngeal Reflux based on the Theory of "Yang Transforming Qi While Yin Constituting Form"
Tianqi ZHANG ; Lin TAO ; Ruixin WANG ; Meng MENG ; Meng MENG
Journal of Traditional Chinese Medicine 2024;65(24):2544-2548
To summarize LI Qiangou's clinical experience in treating laryngopharyngeal reflux disease (LPRD) based on the theory of "yang transforming qi while yin constituting form". It is believed that "insufficiency of yang transforming qi and excess of yin constituting form" is the key mechanism of LPRD, in which yang deficiency of the lungs, spleen and kidneys is an important factor causing "insufficiency of yang transforming qi", while phlegm, dampness and other tangible yin turbidities are the pathological products of "excess of yin constituting form". The key treatment principle is to reinforce yang qi and dispel yin turbidity. Starting from regulating the qi transformation of the sanjiao, the treatment is based on the different pathologies of lung yang insufficiency and phlegm congestion in the upper jiao, spleen yang failing to ascend and dampness accumulation in the middle jiao, and kidney yang deficiency and phlegm-fluid retention in the lower jiao, prescribed by modified Suzi Jiangqi Decoction (苏子降气汤), Shengyang Chushi Decoction (升阳除湿汤), and Jingui Shenqi Pill (金匮肾气丸), the prescriptions could also combine with Banxia Houpo Decoction (半夏厚朴汤) to dissolve phlegm and relieve pharyngeal pains, and regulate qi to direct counterflow downward.
9.Recent advance in role of stromal interaction molecule 1 in ischemic stroke
Ruixin LI ; Gang SU ; Ya WANG ; Minghui SHEN ; Longni ZHU ; Zhenchang ZHANG
Chinese Journal of Neuromedicine 2024;23(2):192-196
Stromal interaction molecule 1 (STIM1) is a key component mediating store-operated calcium entry (SOCE), which controls the opening and closing of plasma membrane Ca 2+ channels by sensing the Ca 2+ content of endoplasmic reticulum luminal stores, and thus affects the processes of cell adhesion, migration, gene expression and proliferation. Studies have shown that STIM1 is abnormally expressed in a variety of cells such as neurons, endothelial cells and platelets during ischemic stroke (IS) development; it plays an important role in the pathological processes regulating hypertension, promoting thrombosis, activating cellular autophagy, mediating apoptosis and promoting neuroinflammation. This review summarizes the research progress of STIM1 in the development and prognostic assessment of IS, and seeks to provide theoretical references for potential therapeutic targets for IS.
10.Research on ethical dilemmas in scientific research among medical graduate students
Xinyue ZHAO ; Mingxia LI ; Ruixin DING ; Xiaojun ZHANG ; Jing LEI
Chinese Medical Ethics 2024;37(4):434-440
The ethical dilemma in scientific research exists at all stages of the scientific research activities among medical graduate students,mainly involving conflicts of interest,clinical trials,animal experiments,and the relationship between teachers and students.If medical graduate students are in the ethical dilemma in scientific research for a long time,their research activities will be greatly affected.By discussing the connotation,evaluation tools,current situation,influencing factors,and improvement measures of ethical dilemmas in scientific research,this paper proposed some suggestions,such as comprehensively investigating the influencing factors of ethical dilemmas in scientific research,and formulating targeted improvement measures,with a view to helping medical graduate students identify and get rid of ethical dilemmas in scientific research,and promote the stability of research activities.

Result Analysis
Print
Save
E-mail